研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

优化多参数磁共振成像毒理活检和检测临床重要的前列腺癌:周边标本采样的作用。

Optimizing multiparametric magnetic resonance imaging-targeted biopsy and detection of clinically significant prostate cancer: the role of perilesional sampling.

发表日期:2022 Dec 12
作者: Jean-Paul Noujeim, Yassir Belahsen, Yolene Lefebvre, Marc Lemort, Maxime Deforche, Nicolas Sirtaine, Robin Martin, Thierry Roumeguère, Alexandre Peltier, Romain Diamand
来源: PROSTATE CANCER AND PROSTATIC DISEASES

摘要:

对于接受磁共振成像(MRI)-靶向活检(TB)的患者,系统活检(SB)的附加值尚不清楚,而与MRI病变相关的阳性核的空间分布鲜为人知。本研究旨在确定紧邻病变进行活检的实用性,以检测临床意义重大的前列腺癌(csPCa)。我们在2016年6月至2022年1月期间,在朱尔斯·博代特研究所招募了505名连续接受SB和TB检测可疑MRI病变(PI-RADS评分3-5)的患者。回顾患者特定的三维前列腺图以确定包含csPCa的系统核心与MRI索引病灶之间的距离。主要结果是每位患者的癌症检测率(CDR)和每个5毫米间隔的阳性核的累计癌症分布率,从MRI索引病灶开始。次要结果是使用卡方自动交互检测器(CHAID)机器学习算法识别超出10毫米范围内csPCa存在风险的群体。 总体而言,TB,SB和联合方法的csPCa CDR分别为32%,25%和37%。虽然联合方法相对于TB检测到更多的csPCa(37%与32%,p<0.001),但当TB与10毫米范围内的病变周围组织取样相关联时,未发现差异(37%与35%,p = 0.2)。累积的csPCa癌症分布率达到了10毫米的边缘的86%。CHAID算法确定了三个风险组:(1)PI-RADS3(“低风险”),(2)PI-RADS4或PI-RADS5和PSA密度<0.15 ng / ml(“中间风险”)和(3)PI-RADS5和PSA密度≥0.15 ng / ml(“高风险”)。错过csPCa的风险分别为低、中、高风险组的2%,8%和29%。避免超过10毫米范围的活检可避免检测到非csPCa的19%。 使用10毫米边缘的周围活检模板似乎是与联合方法相媲美的合理选择,可检测到相当数量的csPCa。我们的风险分层可能进一步改善患者的选择。 ©2022年。作者通过独家许可证授予SpringerNature有限公司使用。
The added-value of systematic biopsy (SB) in patients undergoing magnetic resonance imaging (MRI)-targeted biopsy (TB) remains unclear and the spatial distribution of positive cores relative to the MRI lesion has been poorly studied. The aim of this study was to determine the utility of perilesional biopsy in detecting clinically significant prostate cancer (csPCa).We enrolled 505 consecutive patients that underwent SB and TB for suspicious MRI lesions (PI-RADS score 3-5) at Jules Bordet Institute between June 2016 and January 2022. Patient-specific tridimensional prostate maps were reviewed to determine the distance between systematic cores containing csPCa and the MRI index lesion. Primary outcomes were the cancer detection rate (CDR) per patient and the cumulative cancer distribution rate of positive cores for each 5 mm interval from the MRI index lesion. The secondary outcome was the identification of risk groups for the presence of csPCa beyond a 10 mm margin using the chi-square automated interaction detector (CHAID) machine learning algorithm.Overall, the CDR for csPCa of TB, SB, and combined method were 32%, 25%, and 37%, respectively. While combined method detected more csPCa compared to TB (37% vs. 32%, p < 0.001), no difference was found when TB was associated with perilesional sampling within 10 mm (37% vs. 35%, p = 0.2). The cumulative cancer distribution rate for csPCa reached 86% for the 10 mm margin. The CHAID algorithm identified three risk groups: (1) PI-RADS3 ("low-risk"), (2) PI-RADS4 or PI-RADS5 and PSA density <0.15 ng/ml ("intermediate-risk"), and (3) PI-RADS 5 and PSA density ≥0.15 ng/ml ("high-risk"). The risk of missing csPCa was 2%, 8%, and 29% for low-, intermediate- and high-risk groups, respectively. Avoiding biopsies beyond a 10 mm margin prevented the detection of 19% of non-csPCa.Perilesional biopsy template using a 10 mm margin seems a reasonable alternative to the combined method with a comparable detection of csPCa. Our risk stratification may further enhance the selection of patients.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.