人工智能基于多组学分析推动了癌症精准医疗。
Artificial intelligence-based multi-omics analysis fuels cancer precision medicine.
发表日期:2023 Jan
作者:
Xiujing He, Xiaowei Liu, Fengli Zuo, Hubing Shi, Jing Jing
来源:
SEMINARS IN CANCER BIOLOGY
摘要:
通过生物技术的进步,创新性的组学技术不断涌现,使研究人员能够从基因组、表观遗传组、转录组、蛋白质组、代谢组等多层次信息中获得信息。大量的组学技术,包括单细胞和大规模组学方法,使我们能够对不同的分子层次进行表征,并提供了全面的肿瘤行为视角。多组学分析可以在每个生物层面系统地探索各种分子信息,同时也带来了如何从指数级增长的多组学数据中提取有价值见解的难题。因此,需要高效的算法来降低数据的维度,同时解剖癌症复杂生物过程背后的奥秘。人工智能已经展示了在肿瘤领域内分析互补的多模态数据流的能力。多组学技术和人工智能算法的同时发展,推动了癌症精准医学的发展。在这里,我们介绍最先进的组学技术,并概述了使用人工智能策略进行多组学综合分析的路线图。我们描述了基于人工智能的多组学方法在早期癌症筛选、诊断、反应评估和预后预测方面所取得的进展。最后,我们讨论了多组学分析面临的挑战,以及该领域的未来趋势。随着人工智能在多组学分析中的应用越来越广泛,我们预计精准医学将成为由基于人工智能的多组学技术驱动的新范式。版权所有©2023 Elsevier Ltd.。
With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics approaches, have empowered to characterize different molecular layers at unprecedented scale and resolution, providing a holistic view of tumor behavior. Multi-omics analysis allows systematic interrogation of various molecular information at each biological layer while posing tricky challenges regarding how to extract valuable insights from the exponentially increasing amount of multi-omics data. Therefore, efficient algorithms are needed to reduce the dimensionality of the data while simultaneously dissecting the mysteries behind the complex biological processes of cancer. Artificial intelligence has demonstrated the ability to analyze complementary multi-modal data streams within the oncology realm. The coincident development of multi-omics technologies and artificial intelligence algorithms has fuelled the development of cancer precision medicine. Here, we present state-of-the-art omics technologies and outline a roadmap of multi-omics integration analysis using an artificial intelligence strategy. The advances made using artificial intelligence-based multi-omics approaches are described, especially concerning early cancer screening, diagnosis, response assessment, and prognosis prediction. Finally, we discuss the challenges faced in multi-omics analysis, along with tentative future trends in this field. With the increasing application of artificial intelligence in multi-omics analysis, we anticipate a shifting paradigm in precision medicine becoming driven by artificial intelligence-based multi-omics technologies.Copyright © 2023 Elsevier Ltd. All rights reserved.