研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

自动深度学习系统在MRI可见前列腺癌评估中的应用:先进的缩放扩散加权成像与传统技术的比较。

Automated deep-learning system in the assessment of MRI-visible prostate cancer: comparison of advanced zoomed diffusion-weighted imaging and conventional technique.

发表日期:2023 Jan 17
作者: Lei Hu, Caixia Fu, Xinyang Song, Robert Grimm, Heinrich von Busch, Thomas Benkert, Ali Kamen, Bin Lou, Henkjan Huisman, Angela Tong, Tobias Penzkofer, Moon Hyung Choi, Ivan Shabunin, David Winkel, Pengyi Xing, Dieter Szolar, Fergus Coakley, Steven Shea, Edyta Szurowska, Jing-Yi Guo, Liang Li, Yue-Hua Li, Jun-Gong Zhao
来源: CANCER IMAGING

摘要:

基于深度学习的计算机辅助诊断(DL-CAD)系统使用MRI进行前列腺癌(PCa)检测表现出良好的性能。然而,DL-CAD系统容易受到DWI中高度异质性的影响,从而影响DL-CAD评估并损害性能。本研究旨在比较使用放大视野回波平面DWI(z-DWI)和全视野DWI(f-DWI)的DL-CAD的PCa检测,并找到影响DL-CAD诊断效率的风险因素。该回顾性研究纳入了354名连续参与者,因临床上疑似PCa而接受了MRI检查,其中包括T2WI、f-DWI和z-DWI。DL-CAD用于比较f-DWI和z-DWI的性能,包括患者水平和病变水平。我们使用接受者操作特征曲线分析的曲线下面积(AUC)和替代自由响应接收器操作特征曲线分析来比较使用f-DWI和z-DWI的DL-CAD的性能。使用Logistic回归分析分析影响DL-CAD的风险因素。P值小于0.05被认为具有统计学意义。DL-CAD使用z-DWI在患者水平和病变水平上的整体准确性明显优于f-DWI(AUCpatient:0.89 vs. 0.86; AUClesion:0.86 vs. 0.76; P < 0.001)。DWI中病变的对比噪声比(CNR)是假阳性的独立风险因素(Odds Ratio [OR] = 1.12;P < 0.001)。直肠磁化感应伪影、病变直径和表观扩散系数(ADC)是DL-CAD假阳性(OR直肠磁化感应伪影 = 5.46; OR直径=1.12; OR ADC = 0.998;所有P < 0.001)和假阴性(OR直肠磁化感应伪影=3.31; OR直径=0.82; OR ADC=1.007;所有P≤ 0.03)的独立风险因素。Z-DWI有潜力提高基于前列腺MRI的DL-CAD的检测性能。ChiCTR,NO. ChiCTR2100041834。2023年作者(们)版权所有。
Deep-learning-based computer-aided diagnosis (DL-CAD) systems using MRI for prostate cancer (PCa) detection have demonstrated good performance. Nevertheless, DL-CAD systems are vulnerable to high heterogeneities in DWI, which can interfere with DL-CAD assessments and impair performance. This study aims to compare PCa detection of DL-CAD between zoomed-field-of-view echo-planar DWI (z-DWI) and full-field-of-view DWI (f-DWI) and find the risk factors affecting DL-CAD diagnostic efficiency.This retrospective study enrolled 354 consecutive participants who underwent MRI including T2WI, f-DWI, and z-DWI because of clinically suspected PCa. A DL-CAD was used to compare the performance of f-DWI and z-DWI both on a patient level and lesion level. We used the area under the curve (AUC) of receiver operating characteristics analysis and alternative free-response receiver operating characteristics analysis to compare the performances of DL-CAD using f- DWI and z-DWI. The risk factors affecting the DL-CAD were analyzed using logistic regression analyses. P values less than 0.05 were considered statistically significant.DL-CAD with z-DWI had a significantly better overall accuracy than that with f-DWI both on patient level and lesion level (AUCpatient: 0.89 vs. 0.86; AUClesion: 0.86 vs. 0.76; P < .001). The contrast-to-noise ratio (CNR) of lesions in DWI was an independent risk factor of false positives (odds ratio [OR] = 1.12; P < .001). Rectal susceptibility artifacts, lesion diameter, and apparent diffusion coefficients (ADC) were independent risk factors of both false positives (ORrectal susceptibility artifact = 5.46; ORdiameter, = 1.12; ORADC = 0.998; all P < .001) and false negatives (ORrectal susceptibility artifact = 3.31; ORdiameter = 0.82; ORADC = 1.007; all P ≤ .03) of DL-CAD.Z-DWI has potential to improve the detection performance of a prostate MRI based DL-CAD.ChiCTR, NO. ChiCTR2100041834 . Registered 7 January 2021.© 2023. The Author(s).