覆盖透明质酸的压电纳米复合材料,作为黑色素瘤的压电催化治疗的肿瘤微环境调节剂。
Hyaluronic acid-covered piezoelectric nanocomposites as tumor microenvironment modulators for piezoelectric catalytic therapy of melanoma.
发表日期:2023 Mar 13
作者:
Cheng Chen, Dehong Yu, Wandong Wang, Yuqi Huang, Yu Ying, Weiwei Sheng, Xiunan Wu, Yun Wang, Fenglei Gao, Guan Jiang
来源:
Int J Biol Macromol
摘要:
增加活性氧(ROS)的形成和减少ROS的消除是新型无机超声增敏剂在声动力治疗(SDT)中开发的两个主要目标。因此,设计了具有靶向肿瘤细胞和可降解的产氧壳的BTO-Pd-MnO2-HA纳米复合物作为压电超声增敏剂来增强SDT。钯颗粒(Pd NPs)的沉积导致Schottky结的形成,促进电子空穴对的分离,从而增加SDT中有毒ROS的产生效率。肿瘤微环境(TME)会引发MnO2的降解,并通过类Fenton反应催化H2O2产生羟基自由基(•OH)的生成。BTO-Pd-MnO2-HA可以持续消耗谷胱甘肽(GSH)并产生O2,从而提高SDT和化学动力治疗(CDT)的效率。采用由透明质酸(HA)靶向、在TME中降解激活、由Pd沉积增强的多步增强SDT过程。这个过程不仅为增强超声增敏剂提供了新的选择,而且扩大了压电纳米材料在生物医学中的应用。版权所有©2023 Elsevier B.V.发表。
Increasing the formation of reactive oxygen species (ROS) and reducing the elimination of ROS are the two main objectives in the development of novel inorganic sonosensitizers for use in sonodynamic therapy (SDT). Therefore, BTO-Pd-MnO2-HA nanocomplexes with targeted tumor cells and degradable oxygen-producing shells were designed as piezoelectric sonosensitizers for enhancing SDT. The deposition of palladium particles (Pd NPs) leads to the formation of Schottky junctions, promoting the separation of electron-hole pairs and thereby increasing the efficiency of toxic ROS generation in SDT. The tumor microenvironment (TME) triggers the degradation of MnO2, and the released Mn2+ ions catalyze the generation of hydroxyl radicals (•OH) from H2O2 through a Fenton-like reaction. BTO-Pd-MnO2-HA can continuously consume glutathione (GSH) and generate O2, thereby improving the efficiency of SDT and chemodynamic therapy (CDT). A multistep enhanced SDT process mediated by the piezoelectric sonosensitizers BTO-Pd-MnO2-HA was designed, targeted by hyaluronic acid (HA), activated by decomposition in TME, and amplified by deposition of Pd. This procedure not only presents a new alternative for the improvement of sonosensitizers but also widens the application of piezoelectric nanomaterials in biomedicine.Copyright © 2023. Published by Elsevier B.V.