用89Zr直接标记靶向Trastuzumab的三嵌段共聚物微囊,用于正电子发射断层扫描成像。
Direct Radiolabeling of Trastuzumab-Targeting Triblock Copolymer Vesicles with 89Zr for Positron Emission Tomography Imaging.
发表日期:2023 Mar 16
作者:
Veronika Kozlovskaya, Maxwell Ducharme, Maksim Dolmat, James M Omweri, Volkan Tekin, Suzanne E Lapi, Eugenia Kharlampieva
来源:
BIOMACROMOLECULES
摘要:
可以通过正电子发射断层扫描(PET)轻松成像的放射性药物纳米载体具有极高的重要性,因为它们在体内的结果可以高灵敏度地PET跟踪。然而,大多数PET引导的治疗性载体的典型放射性标记利用螯合剂配体进行修饰,这提出了各种挑战。此外,与通过被动肿瘤靶向不同,通过结合亚表达的癌细胞受体对药物输送载体进行特异性靶向对于改善治疗性输送到肿瘤中非常关键。在此,我们通过无螯合剂放射性标记开发了60纳米尺寸的89Zr标记的三嵌段共聚物聚合体,这些聚合体由聚(N-乙烯基吡咯烷酮)5-b-聚(二甲基硅氧烷)30-b-聚(N-乙烯基吡咯烷酮)5(PVPON5-PDMS30-PVPON5)三嵌段共聚物组装而成,然后通过氢键吸附可降解的单宁酸,单宁酸(TA)在聚合体表面上。 TA用作89Zr放射性同位素和靶向人源化单克隆抗体trastuzumab(Tmab)的定位层。与裸露的PVPON5-PDMS30-PVPON5聚合体相比,TA和Tmab修饰的聚合体展示了高于95%的放射化学产率。 PET体内成像证实了囊泡膜对89Zr的优异保持能力长达7天。健康的BALB/c小鼠的动物生物分布证实了89Zr标记的聚合体通过脾脏和肝脏清除,而不像自由的非束缚89Zr放射性示踪剂那样在骨骼中积累。发现89Zr放射性标记的聚合体通过囊泡表面上的Tmab-TA复合物具有特异性靶向BT474 HER2阳性乳腺癌细胞。与目前发展中的共价方法相比,非共价Tmab对聚合体膜的锚定可以高度有利于纳米颗粒的修饰,因为它允许易于快速地整合各种广泛的定位蛋白质。鉴于这些多聚体包裹和释放抗癌治疗剂的能力,它们可以进一步扩展为精准靶向的治疗载体,通过高效的药物输送策略推进人类健康。
Radiolabeled drug nanocarriers that can be easily imaged via positron emission tomography (PET) are highly significant as their in vivo outcome can be quantitatively PET-traced with high sensitivity. However, typical radiolabeling of most PET-guided theranostic vehicles utilizes modification with chelator ligands, which presents various challenges. In addition, unlike passive tumor targeting, specific targeting of drug delivery vehicles via binding affinity to overexpressed cancer cell receptors is crucial to improve the theranostic delivery to tumors. Herein, we developed 89Zr-labeled triblock copolymer polymersomes of 60 nm size through chelator-free radiolabeling. The polymersomes are assembled from poly(N-vinylpyrrolidone)5-b-poly(dimethylsiloxane)30-b-poly(N-vinylpyrrolidone)5 (PVPON5-PDMS30-PVPON5) triblock copolymers followed by adsorption of a degradable tannin, tannic acid (TA), on the polymersome surface through hydrogen bonding. TA serves as an anchoring layer for both 89Zr radionuclide and targeting recombinant humanized monoclonal antibody, trastuzumab (Tmab). Unlike bare PVPON5-PDMS30-PVPON5 polymersomes, TA- and Tmab-modified polymersomes demonstrated a high radiochemical yield of more than 95%. Excellent retention of 89Zr by the vesicle membrane for up to 7 days was confirmed by PET in vivo imaging. Animal biodistribution using healthy BALB/c mice confirmed the clearance of 89Zr-labeled polymersomes through the spleen and liver without their accumulation in bone, unlike the free nonbound 89Zr radiotracer. The 89Zr-radiolabeled polymersomes were found to specifically target BT474 HER2-positive breast cancer cells via the Tmab-TA complex on the vesicle surface. The noncovalent Tmab anchoring to the polymersome membrane can be highly advantageous for nanoparticle modification compared to currently developed covalent methods, as it allows easy and quick integration of a broad range of targeting proteins. Given the ability of these polymersomes to encapsulate and release anticancer therapeutics, they can be further expanded as precision-targeted therapeutic carriers for advancing human health through highly effective drug delivery strategies.