使用红外光脉冲在哺乳动物细胞内实现高效大载荷输送的金属微环装置。
Metallic micro-ring device for highly efficient large cargo delivery in mammalian cells using infrared light pulses.
发表日期:2023 Mar 16
作者:
Ashwini Shinde, Pallavi Shinde, Srabani Kar, Kavitha Illath, Souvik Dey, Nitish R Mahapatra, Moeto Nagai, Tuhin Subhra Santra
来源:
LAB ON A CHIP
摘要:
生物分子的均匀转染进入活细胞,具有高递送效率和细胞存活率,是生物学研究中非常重要的领域,且有许多生物医学应用。在本研究中,我们报道使用红外光脉冲激活的钛微环(TMR)装置,高效、均匀地将小到非常大的生物分子并行转染进入多种细胞类型。TMR阵列装置(2厘米×2厘米)由每个微环外径10微米,内径3微米和两个微环之间10微米的距离组成。当红外(1050纳米)脉冲激光照射到TMR装置上时,会产生光热空化气泡,破坏细胞质膜,并通过简单的扩散过程轻柔地将生物分子输送到细胞中。这种TMR装置成功地将不同类型的小到非常大的生物分子,如碘化丙锭(PI;668.4 Da)染料,右旋糖基胶(3 kDa),小干扰RNA(13.3 kDa),增强型绿色荧光蛋白表达质粒DNA(6.2 kb)和β-半乳糖苷酶酶(465 kDa)输送进入人子宫颈(SiHa),小鼠成纤维细胞(L929)和小鼠神经嵴(N2a)癌细胞中。对于较小的分子(PI染料),激光通量为21 mJ cm-2,250脉冲下,递送效率和细胞存活率分别达到约96%和约97%。相比之下,激光通量为45 mJ cm-2,250个脉冲时,在SiHa细胞中的质粒DNA达到了约85%的转染效率和约90%的细胞存活率。此外,通过共聚焦显微镜和流式细胞术分析,证实了β-半乳糖苷酶酶的胞内转运,导致β-半乳糖苷酶酶和calcein AM的共同染色率约为83%。基于这些不同类型的生物分子在不同细胞类型中的高效输送,该装置具有细胞诊断和治疗应用的潜力。
Uniform transfection of biomolecules into live cells with high delivery efficiency and cell viability is an immensely important area of biological research and has many biomedical applications. In the present study, we report highly efficient, uniform parallel intracellular delivery of small to very large biomolecules into diverse cell types using a titanium micro-ring (TMR) device activated by infrared (IR) light pulse. A TMR array device (2 cm × 2 cm) consists of a 10 μm outer diameter and 3 μm inner diameter for each micro-ring, and 10 μm interspacing between two micro-rings. Upon IR (1050 nm) pulse laser irradiation on the TMR device, photothermal cavitation bubbles are generated, disrupting the cell plasma membrane, and biomolecules are gently delivered into the cells by a simple diffusion process. This TMR device successfully delivered diverse types of small to very large biomolecules such as propidium iodide (PI; 668.4 Da) dye, dextran (3 kDa), small interfering RNA (13.3 kDa), enhanced green fluorescent protein expression plasmid DNA (6.2 kb), and β-galactosidase enzyme (465 kDa) into human cervical (SiHa), mouse fibroblast (L929), and mouse neural crest-derived (N2a) cancer cells. For smaller molecules (PI dye), delivery efficiency and cell viability were achieved at ∼96% and ∼97%, respectively, with a laser fluence of 21 mJ cm-2 for 250 pulses. In contrast, ∼85% transfection efficiency and ∼90% cell viability were achieved for plasmid DNA with 45 mJ cm-2 laser fluence for 250 pulses in SiHa cells. Moreover, the intracellular delivery of β-galactosidase enzyme was confirmed with confocal microscopy and flow cytometry analysis resulting in ∼83% co-staining of β-galactosidase enzyme and calcein AM. Based on these efficient deliveries of diverse types of biomolecules in different cell types, the device has the potential for cellular diagnostic and therapeutic applications.