研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

使用微图案芯片进行大规模化疗疗效研究,可以轻松构建具有多种仿生特征的三维肿瘤模型。

Facile construction of a 3D tumor model with multiple biomimetic characteristics using a micropatterned chip for large-scale chemotherapy investigation.

发表日期:2023 Mar 21
作者: Meilin Sun, Jinwei Zhang, Wenzhu Fu, Tingting Xuanyuan, Wenming Liu
来源: LAB ON A CHIP

摘要:

仿生学前临床肿瘤模型的建立和应用具有在药物发现和癌症治疗中发挥重要作用的潜力。本文利用微图案阵列芯片开发了一种简便、强大的微工程辅助方法,可用于高度仿生的三维肿瘤构建,以进行动态和大规模的抗肿瘤研究。改进的聚二甲基硅氧烷(PDMS)微接触印刷保证了芯片制造的高保真度、简便性和稳定性。采用 PDMS 微图案芯片可以进行微尺度、简便、生物相容性、可重复的细胞定位,具备数量均匀性及地几何均匀性的三维肿瘤阵列形成,构建了具有复杂的多层细胞排列、不同的表型梯度和生化梯度的阵列状三维肿瘤模型。在易操作的芯片基础上,证实了建立的仿生学模型在肿瘤对抗肿瘤化疗的时间和大规模研究中的适用性。结果表明,在抗肿瘤筛选中,三维肿瘤的尺寸几何和仿生程度的重要性,以探索药物易感性和耐药性。本研究提供了一种简便可靠的策略,可进行高度仿生的肿瘤操作和分析,具有在肿瘤学、药理学、精准医学和组织微工程中的广泛应用潜力。
The establishment and application of biomimetic preclinical tumor models for generalizable and high-throughput antitumor screening play a promising role in drug discovery and cancer therapeutics. Herein, a facile and robust microengineering-assisted methodology for highly biomimetic three-dimensional (3D) tumor construction for dynamic and large-scale antitumor investigation is developed using micropatterned array chips. The high fidelity, simplicity, and stability of chip fabrication are guaranteed by improved polydimethylsiloxane (PDMS) microcontact printing. The employment of a PDMS-micropatterned chip permits microscale, simple, biocompatible, and reproducible cell localization with quantity uniformity and 3D tumor array formation with geometric homogeneity. Array-like 3D tumor models possessing complex multilayer cell arrangements, diverse phenotypic gradients, and biochemical gradients were prepared based on the use of easy-to-operate chips. The applicability of the established biomimetic models in temporal and massive investigations of tumor responses to antitumor chemotherapy is also verified experimentally. The results support the importance of the dimensional geometry and biomimetic degree of 3D tumors when conducting antitumor screening to explore drug susceptibility and resistance. This work provides a facile and reliable strategy to perform highly biomimetic tumor manipulation and analysis, which holds great potential for applications in oncology, pharmacology, precision medicine, and tissue microengineering.