研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

具有高度多孔碳基质的花状纳米酶,对药物耐药癌症引起强烈的氧化风暴。

Flower-like Nanozyme with Highly Porous Carbon Matrix Induces Robust Oxidative Storm against Drug-Resistant Cancer.

发表日期:2023 Mar 22
作者: Yuxin Xing, Lin Li, Yuhua Chen, Lu Wang, Shuqi Tang, Xiyue Xie, Shuai Wang, Jixi Huang, Kaiyong Cai, Jixi Zhang
来源: ANTIOXIDANTS & REDOX SIGNALING

摘要:

氧化应激物质(ROS)发生器正在抑制和治疗难以治愈的肿瘤方面取得突破,但受限的底物浓度,自由基寿命短和氧化损伤限制严重影响了功效。因此,研发了一种具有高度渗透性叶片和催化金属位点的花状纳米酶,以解决这些挑战,从而提高了底物和产物的可及性。在沸石亚胺酸骨架的形成过程中,钴离子促进了聚合反应的催化和多多巴胺的沉积。这些聚合物可以作为刚硬材料,防止骨架坍塌并在碳化过程中调整孔道的开放程度。高度多孔的基质中的钴单原子/团簇位点产生了过氧化物酶/氧化酶样活性,具有高催化效率(Kcat/Km),比常规纳米/生物酶高达6个数量级。因此,选择性催化引发了强大的ROS风暴,导致抗氧化和抗凋亡的防御同步在药物耐药性癌细胞中迅速累积氧化损伤和失败。通过联合传递的氧化还原平衡调节剂,实现了显著的体内抗肿瘤效果。该研究为提高难以治愈的肿瘤的治疗提供了有利的ROS发生器的途径。
Reactive oxygen species (ROS) generators are sparking breakthroughs in sensitization and treatment of therapy-resistant tumors, yet the efficacy is drastically compromised by limited substrate concentrations, short lifetimes of free radicals, and restricted oxidative damage. Herein, a flower-like nanozyme with highly permeable leaflets accommodating catalytic metal sites was developed to address the challenges by boosting substrate and product accessibility. In the formation of a zeolite imidazole framework, cobalt ions promoted catalytic polymerization and deposition of polydopamine. The polymers acted as a stiffener for preventing framework collapse and maneuvering pore reopening during carbonization. The cobalt single-atom/cluster sites in the highly porous matrix generated peroxidase/oxidase-like activities with high catalytic efficiency (Kcat/Km) up to 6 orders of magnitude greater than that of conventional nano-/biozymes. Thereby, a robust ROS storm induced by selective catalysis led to rapid accumulation of oxidative damage and failure of antioxidant and antiapoptotic defense synchronization in drug-resistant cancer cells. By synergy of a redox homeostasis disrupter co-delivered, a significantly high antitumor efficiency was realized in vivo. This work offers a route to kinetically favorable ROS generators for advancing the treatment of therapy-resistant tumors.