人工智能在肝脏局灶性病变自动诊断中的应用:一项系统综述。
Applications of Artificial Intelligence in the Automatic Diagnosis of Focal Liver Lesions: A Systematic Review.
发表日期:2023 Apr 01
作者:
Stefan Lucian Popa, Simona Grad, Giuseppe Chiarioni, Annalisa Masier, Giulia Peserico, Vlad Dumitru Brata, Dinu Iuliu Dumitrascu, Alberto Fantin
来源:
MEDICINE & SCIENCE IN SPORTS & EXERCISE
摘要:
肝脏局灶性病变(FLLs)是指与正常肝脏有所区别的异常实体或液态质,常常在临床上没有症状。本系统性综述的目的是提供当前人工智能(AI)应用、深度学习系统和卷积神经网络的全面概述,这些应用可以完全自动化诊断FLLs。我们使用预定义的关键字在PubMed、Cochrane图书馆、EMBASE和WILEY数据库中进行搜索,筛选关于AI应用能够自动诊断FLLs的相关出版物。搜索词语包括:(局灶性肝脏病变OR FLLs OR 肝脏局灶性病变OR肝脏瘤OR肝肿瘤)AND(人工智能OR机器学习OR 神经网络OR深度学习OR自动诊断OR超声OR US OR计算机扫描OR CT OR磁共振成像OR MRI OR 计算机辅助诊断OR自动计算机断层扫描OR自动磁共振成像)。我们的搜索共识别出32篇分析完全自动图像诊断FLLs的文章,其中14篇分析了肝脏超声图像,8篇分析了计算机断层扫描图像,10篇分析了磁共振成像获得的图像。我们发现有重要的证据表明,使用基于AI的应用实现完全自动化的FLLs诊断系统是可行的。各种自动化AI应用已经得到了分析。然而,目前没有明确的证据表明任何一种系统是优于其他系统的。
Focal liver lesions (FLLs) are defined as abnormal solid or liquid masses differentiated from normal liver, frequently being clinically asymptomatic. The aim of this systematic review is to provide a comprehensive overview of current artificial intelligence (AI) applications, deep learning systems and convolutional neural networks, capable of performing a completely automated diagnosis of FLLs.We searched PubMed, Cochrane Library, EMBASE, and WILEY databases using predefined keywords. Articles were screened for relevant publications about AI applications capable of automated diagnosis of FLLs. The search terms included: (focal liver lesions OR FLLs OR hepatic focal lesions OR liver focal lesions OR liver tumor OR hepatic tumor) AND (artificial intelligence OR machine learning OR neural networks OR deep learning OR automated diagnosis OR ultrasound OR US OR computer scan OR CT OR magnetic resonance imaging OR MRI OR computer-aided diagnosis OR automated computer tomography OR automated magnetic imaging).Our search identified a total of 32 articles analyzing complete automated imagistic diagnosis of FLLs, out of which 14 studies analyzing liver ultrasound images, 8 studies analyzing computer tomography images and 10 studies analyzing images obtained from magnetic resonance imaging.We found significant evidence demonstrating that implementing a complete automated system for FLLs diagnosis using AI-based applications is currently feasible. Various automated AI-based applications have been analyzed. However, there is no clear evidence about the superiority of any of the systems.