研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

细胞在共培养中的分离是由于不同时间尺度上的差异粘附和收缩作用推动的。

Cellular segregation in cocultures is driven by differential adhesion and contractility on distinct timescales.

发表日期:2023 Apr 11
作者: Mark Skamrahl, Justus Schünemann, Markus Mukenhirn, Hongtao Pang, Jannis Gottwald, Marcel Jipp, Maximilian Ferle, Angela Rübeling, Tabea A Oswald, Alf Honigmann, Andreas Janshoff
来源: Cellular & Molecular Immunology

摘要:

细胞分类和图案形成对许多生物过程至关重要,例如发育、组织再生和癌症进展。细胞分类的突出物理驱动力是差异性粘附和收缩力。在这里,我们使用多个定量、高通量方法研究了表皮共培养物的分离,包括高度收缩的ZO1/2缺乏MDCKII细胞(dKD)和其野生型(WT)对照组,以监测它们的动力学和机械特性。我们观察到一个时间依赖性的分离过程,主要受短时(<5小时)的差异性收缩力和长时(>5小时)的差异性粘附力控制。过度收缩的dKD细胞对它们的WT相邻细胞施加强大的侧向力,从而使它们的表面积升高。同时,缺乏紧密连接的收缩细胞表现出较弱的细胞间粘附和较低的牵引力。药物诱导的收缩力降低和部分钙离子消耗可以延缓最初的分离,但无法改变最终分离状态,从而使差异性粘附成为长时间尺度上的主要分离力。这个良好控制的模型系统展示了细胞分类是通过差异性粘附和收缩间复杂的相互作用完成的,并且可以在很大程度上解释为普遍的物理驱动力。
Cellular sorting and pattern formation are crucial for many biological processes such as development, tissue regeneration, and cancer progression. Prominent physical driving forces for cellular sorting are differential adhesion and contractility. Here, we studied the segregation of epithelial cocultures containing highly contractile, ZO1/2-depleted MDCKII cells (dKD) and their wild-type (WT) counterparts using multiple quantitative, high-throughput methods to monitor their dynamical and mechanical properties. We observe a time-dependent segregation process governed mainly by differential contractility on short (<5 h) and differential adhesion on long (>5 h) timescales. The overly contractile dKD cells exert strong lateral forces on their WT neighbors, thereby apically depleting their surface area. Concomitantly, the tight junction-depleted, contractile cells exhibit weaker cell-cell adhesion and lower traction force. Drug-induced contractility reduction and partial calcium depletion delay the initial segregation but cease to change the final demixed state, rendering differential adhesion the dominant segregation force at longer timescales. This well-controlled model system shows how cell sorting is accomplished through a complex interplay between differential adhesion and contractility and can be explained largely by generic physical driving forces.