研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

使用 236,880 个电极的 CMOS-MEA 技术,实现具有单个神经元分辨率的大面积场电位成像。

Large-Area Field Potential Imaging Having Single Neuron Resolution Using 236 880 Electrodes CMOS-MEA Technology.

发表日期:2023 Apr 23
作者: Ikuro Suzuki, Naoki Matsuda, Xiaobo Han, Shuhei Noji, Mikako Shibata, Nami Nagafuku, Yuto Ishibashi
来源: Brain Structure & Function

摘要:

具有高时空分辨率单细胞水平的电生理技术和对大面积非侵入性测量的补充,提供了对神经元功能的深入了解。在这里,使用了互补金属氧化物半导体(CMOS)微电极阵列(MEA),该阵列使用了236,880个电极,每个电极的尺寸为11.22×11.22微米,覆盖了5.5×5.9毫米的广泛区域,为脑片、人类iPS细胞衍生的皮质网络、周围神经元和人类大脑器官提供了详细的、单细胞级别的神经活动分析平台。根据单个DRG神经元的发射模式和复合反应、轴突传导特性和抗癌药物的变化、网络活动和大脑器官中的复合物转化,提取了不同脑区之间传播模式特征,并将其转化为基于单细胞时间序列模式的复合物。使用CMOS-MEA对单细胞水平进行的神经活动详细分析,为离体和体外脑电路基本机制的新理解、针对人类神经疾病的药物发现和化合物毒性评估提供了基础。© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
The electrophysiological technology having a high spatiotemporal resolution at the single-cell level and noninvasive measurements of large areas provide insights on underlying neuronal function. Here, a complementary metal-oxide semiconductor (CMOS)-microelectrode array (MEA) is used that uses 236 880 electrodes each with an electrode size of 11.22 × 11.22 µm and 236 880 covering a wide area of 5.5 × 5.9 mm in presenting a detailed and single-cell-level neural activity analysis platform for brain slices, human iPS cell-derived cortical networks, peripheral neurons, and human brain organoids. Propagation pattern characteristics between brain regions changes the synaptic propagation into compounds based on single-cell time-series patterns, classification based on single DRG neuron firing patterns and compound responses, axonal conduction characteristics and changes to anticancer drugs, and network activities and transition to compounds in brain organoids are extracted. This detailed analysis of neural activity at the single-cell level using the CMOS-MEA provides a new understanding of the basic mechanisms of brain circuits in vitro and ex vivo, on human neurological diseases for drug discovery, and compound toxicity assessment.© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.