新型抗生素的形态工程:玻璃微颗粒和大豆卵磷脂对革兰氏阳性放线菌Lentzea aerocolonigenes的丽菲霉素产量和细胞形态的影响。
Morphology engineering for novel antibiotics: Effect of glass microparticles and soy lecithin on rebeccamycin production and cellular morphology of filamentous actinomycete Lentzea aerocolonigenes.
发表日期:2023
作者:
Anna Dinius, Kathrin Schrinner, Marcel Schrader, Zuzanna Justyna Kozanecka, Henry Brauns, Leon Klose, Hannah Weiß, Arno Kwade, Rainer Krull
来源:
BIOMASS & BIOENERGY
摘要:
作为放线菌,空气色素Lentzea aerocolonigenes是抗生素和抗肿瘤药物Rebeccamycin的天然生产者。由于其丝状细胞形态使培养变得具有挑战性,因此需要形态工程技术来提高生产效率。文献中描述了一种有前途的方法是添加微米级矿物质颗粒以精确调整细胞形态和相应的产品合成(微粒强化培养,MPEC)。本研究引入了玻璃微粒作为菌丝状有机体生物过程强化的一种新型补充类型。进行了几项研究以筛选出最佳的微粒设置,包括微粒大小和浓度对增强产能、微粒纳入生物颗粒的行为、颗粒的生存性和形态变化等方面的影响和效果。例如,10 g / L的玻璃微粒,其中位直径为7.9μm,可导致产品合成增加高达四倍,并伴随整体生物量的增强生存性。此外,结构阐明表明,从MPEC中分离的生物颗粒倾向于比未添加控制颗粒具有较低的菌丝密度。在这种情况下,进行了氧微分布分析,以更好地了解内部结构变化如何与氧气的供应相互作用。在这里,结果显示氧气消耗率随着玻璃微粒补充量的增加呈现出一种矛盾的趋势。最终,在另一种有前途的培养策略——大豆卵磷脂(7.5 g / L)补充的情况下,将MPEC与之相结合以进一步提高培养性能。在优化的设置中,两种技术的组合导致在培养10天后出现213 mg / L的Rebeccamycin浓度,这是迄今为止发表的L. aerocolonigenes微粒补充摇瓶培养中的最高值。版权所有©2023 Dinius,Schrinner,Schrader,Kozanecka,Brauns,Klose,Weiß,Kwade和Krull。
Lentzea aerocolonigenes, as an actinomycete, is a natural producer of the antibiotic and antitumoral drug rebeccamycin. Due to the filamentous cellular morphology handling in cultivations is challenging; therefore, morphology engineering techniques are mandatory to enhance productivity. One promising approach described in the literature is the addition of mineral particles in the micrometer range to precisely adjust cellular morphology and the corresponding product synthesis (microparticle-enhanced cultivation, MPEC). Glass microparticles are introduced in this study as a novel supplementation type for bioprocess intensification in filamentous organisms. Several investigations were conducted to screen for an optimal particle setup, including particle size and concentration regarding their impact and effects on enhanced productivity, microparticle incorporation behavior into the biopellets, the viability of pellets, and morphological changes. Glass microparticles (10 g·L-1) with a median diameter of 7.9 µm, for instance, induced an up to fourfold increase in product synthesis accompanied by overall enhanced viability of biomass. Furthermore, structural elucidations showed that biopellets isolated from MPEC tend to have lower hyphal density than unsupplemented control pellets. In this context, oxygen microprofiling was conducted to better understand how internal structural changes interwind with oxygen supply into the pellets. Here, the resulting oxygen profiles are of a contradictive trend of steeper oxygen consumption with increasing glass microparticle supplementation. Eventually, MPEC was combined with another promising cultivation strategy, the supplementation of soy lecithin (7.5 g·L-1), to further increase the cultivation performance. A combination of both techniques in an optimized setup resulted in a rebeccamycin concentration of 213 mg·L-1 after 10 days of cultivation, the highest value published so far for microparticle-supplemented shake flask cultivations of L. aerocolonigenes.Copyright © 2023 Dinius, Schrinner, Schrader, Kozanecka, Brauns, Klose, Weiß, Kwade and Krull.