利用自动图像分析常规诊断 H&E 标本和神经网络建模对 HPV相关咽喉鳞状细胞癌的多因素预测进行评估。
Multifactorial estimation of clinical outcome in HPV-associated oropharyngeal squamous cell carcinoma via automated image analysis of routine diagnostic H&E slides and neural network modelling.
发表日期:2023 Apr 23
作者:
Jonas Hue, Zaneta Valinciute, Selvam Thavaraj, Lorenzo Veschini
来源:
ORAL ONCOLOGY
摘要:
常规血红木和嗜酸性染色(H&E)病理切片照片从人类乳头瘤病毒相关口咽鳞状细胞癌(HPV + OpSCC)中包含丰富的预后信息。在本研究中,我们开发了一个高内容图像分析(HCIA)工作流来量化HPV + OpSCC患者的H&E图像特征,以识别预后特征并预测患者预后。首先,我们开发了一个开源的HCIA工具,用于单个细胞分割和H&E图像分类。随后,我们使用我们的HCIA工具分析了一组889张诊断性H&E切片图像,这些切片来自具有有利(FO,n = 60)或不利(UO,n = 30)预后的HPV + OpSCC患者的回顾性队列。我们已经确定并测量了31个预后特征,这些特征在每个样本中都被量化,并用于训练神经网络(NN)模型来预测患者预后。单变量和多变量统计分析显示,FO患者和UO患者之间在31个和17个变量中分别具有显着差异(P <0.05)。在单个图像水平上,NN模型在测试集和验证集中识别FO和UO患者的总体准确率分别为72.5%和71.2%。考虑每个患者的10张图像时,NN模型的准确率在测试集中增加到86.7%。我们的开源H&E分析工作流和预测模型确认了先前报告的预后特征,并确定了新的因素,其具有令人满意的准确性来预测HPV + OpSCC的预后。我们的工作支持在数字病理学中使用机器学习,以在常规诊断病理学中利用临床相关的特征,而不需要额外的生物标志物。版权所有©2023作者。 由Elsevier Ltd.出版。保留所有权利。
Routine haematoxylin and eosin (H&E) photomicrographs from human papillomavirus-associated oropharyngeal squamous cell carcinomas (HPV + OpSCC) contain a wealth of prognostic information. In this study, we developed a high content image analysis (HCIA) workflow to quantify features of H&E images from HPV + OpSCC patients to identify prognostic features and predict patient outcomes.First, we have developed an open-source HCIA tool for single-cell segmentation and classification of H&E images. Subsequently, we have used our HCIA tool to analyse a set of 889 images from diagnostic H&E slides in a retrospective cohort of HPV + OpSCC patients with favourable (FO, n = 60) or unfavourable (UO, n = 30) outcomes. We have identified and measured 31 prognostic features which were quantified in each sample and used to train a neural network (NN) model to predict patient outcomes.Univariate and multivariate statistical analyses revealed significant differences between FO and UO patients in 31 and 17 variables, respectively (P < 0.05). At the single-image level, the NN model had an overall accuracy of 72.5% and 71.2% in recognising FO and UO patients when applied to test or validation sets, respectively. When considering 10 images per patient, the accuracy of the NN model increased to 86.7% in the test set.Our open-source H&E analysis workflow and predictive models confirm previously reported prognostic features and identifies novel factors which predict HPV + OpSCC outcomes with promising accuracy. Our work supports the use of machine learning in digital pathology to exploit clinically relevant features in routine diagnostic pathology without additional biomarkers.Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.