基于深度学习的肿瘤分割在使用多参数MRI进行四级胶质瘤目标描绘和反应评估方面的可行性。
Feasibility of deep learning-based tumor segmentation for target delineation and response assessment in grade-4 glioma using multi-parametric MRI.
发表日期:2023
作者:
Marianne H Hannisdal, Dorota Goplen, Saruar Alam, Judit Haasz, Leif Oltedal, Mohummad A Rahman, Cecilie Brekke Rygh, Stein Atle Lie, Arvid Lundervold, Martha Chekenya
来源:
BIOMEDICINE & PHARMACOTHERAPY
摘要:
肿瘤负荷评估对于放射治疗(RT)疗效评估和临床决策至关重要,但手动肿瘤描绘因放射学复杂性而仍然费力和具有挑战性。本研究的目的是探讨基于nnUNet算法的预训练深度学习模型集合 HD-GLIO 工具在肿瘤分割和反应预测方面的可行性,以及其在临床部署方面的潜力。我们分析了来自23名4级胶质瘤患者的49个多参数磁共振检查中 HD-GLIO 输出预测的强化对比度(CE)和非强化(NE)情况。在前瞻性测试 HD-GLIO 输出在 RT 环境下的可行性之前,将其体积与2名独立操作员的手动描绘进行了回顾性比较。对于 CE,操作员1 和操作员2 的中位 Dice 分数分别为 0.81(95% CI 0.71-0.83)和 0.82(95% CI 0.74-0.84)。对于 NE,中位 Dice 分数分别为 0.65(95% CI 0.56-0.69)和 0.63(95% CI 0.57-0.67)。比较体积大小,对于 CE,我们发现了优秀的组内相关系数,分别为 0.90(P <.001)和 0.95(P <.001),对于 NE,分别为 0.97(P <.001)和 0.90(P <.001)。此外,神经肿瘤学体积和 HD-GLIO 体积的反应评估之间存在强相关性(P <.001,Spearman R2 = 0.83)。CE 和 NE 体积的纵向生长关系能够区分临床反应:对于反应者,CE 和 NE 体积的 Pearson 相关系数为 0.55(P = .04),对于非反应者为 0.91(P> .01),对于中间/混合型反应者为 0.80(P = .05)。
HD-GLIO 对于 RT 靶区描绘和 MRI 肿瘤体积评估是可行的。CE/NE 肿瘤区域生长的相关性显示了预测治疗临床反应的潜力。©2023年作者及牛津大学出版社、神经肿瘤协会和欧洲神经肿瘤协会共同发表。
Tumor burden assessment is essential for radiation therapy (RT), treatment response evaluation, and clinical decision-making. However, manual tumor delineation remains laborious and challenging due to radiological complexity. The objective of this study was to investigate the feasibility of the HD-GLIO tool, an ensemble of pre-trained deep learning models based on the nnUNet-algorithm, for tumor segmentation, response prediction, and its potential for clinical deployment.We analyzed the predicted contrast-enhanced (CE) and non-enhancing (NE) HD-GLIO output in 49 multi-parametric MRI examinations from 23 grade-4 glioma patients. The volumes were retrospectively compared to corresponding manual delineations by 2 independent operators, before prospectively testing the feasibility of clinical deployment of HD-GLIO-output to a RT setting.For CE, median Dice scores were 0.81 (95% CI 0.71-0.83) and 0.82 (95% CI 0.74-0.84) for operator-1 and operator-2, respectively. For NE, median Dice scores were 0.65 (95% CI 0.56-0,69) and 0.63 (95% CI 0.57-0.67), respectively. Comparing volume sizes, we found excellent intra-class correlation coefficients of 0.90 (P < .001) and 0.95 (P < .001), for CE, respectively, and 0.97 (P < .001) and 0.90 (P < .001), for NE, respectively. Moreover, there was a strong correlation between response assessment in Neuro-Oncology volumes and HD-GLIO-volumes (P < .001, Spearman's R2 = 0.83). Longitudinal growth relations between CE- and NE-volumes distinguished patients by clinical response: Pearson correlations of CE- and NE-volumes were 0.55 (P = .04) for responders, 0.91 (P > .01) for non-responders, and 0.80 (P = .05) for intermediate/mixed responders.HD-GLIO was feasible for RT target delineation and MRI tumor volume assessment. CE/NE tumor-compartment growth correlation showed potential to predict clinical response to treatment.© The Author(s) 2023. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.