N-(2,6-二氯苯基)-N-甲苯基甲酰胂二硫代氨基甲酸盐的Ni2+和Cu2+络合物的结构和功能特性作为CYP3A4潜在底物。
Ni2+ and Cu2+ complexes of N-(2,6-dichlorophenyl)-N-mesityl formamidine dithiocarbamate structural and functional properties as CYP3A4 potential substrates.
发表日期:2023 Aug 17
作者:
Segun D Oladipo, Sizwe J Zamisa, Abosede A Badeji, Murtala A Ejalonibu, Adesola A Adeleke, Isiaka A Lawal, Amr Henni, Monsurat M Lawal
来源:
BIOMEDICINE & PHARMACOTHERAPY
摘要:
金属化合物因其在多个方面的可塑性而持续吸引着各种应用。在本研究中,我们展示了N'-(2,6-二氯苯基)-N-三苯基甲酰胺基硫代氨基甲酸盐(L)的[Ni-(L)2](1)和[Cu-(L)2](2)所构成的Ni2 +和Cu2 +配合物的晶体结构和功能性质的研究结果。我们通过1H和13C核磁共振(NMR)、元素分析和单晶X射线衍射分析确定了这两个配合物的结构。分析结果显示,这两个配合物同质异构,具有P21/c的空间群和相似性指标(π)为0.002的晶胞。这两个配合物围绕金属中心呈现畸变的四方平面几何构型。计算得出的数据与实验数据,包括键长、角度和NMR值,相似度很高。Hirshfeld表面分析揭示了两个溶剂化配合物的晶格驱动下不同类型的分子间相互作用的变化贡献。我们对这些结构的潜在生物学含义的认识使我们能够将这些化合物作为潜在的CYP3A4抑制剂进行探究。这种方法模拟了当前制药设计和生物医学的趋势,通过将潜在活性分子与各种媒介结合以预测其生物活性。模拟结果显示,化合物1和化合物2与CYP3A4呈现明显的结合,平均相互作用能分别为-97和-87 kcal/mol。蛋白质使用基于高斯混合模型的聚类和自由能预测在三种研究模型中至少出现了五种构象状态。电场分析显示了活性位点与底物结合的关键残基,使CYP3A4结构实现功能预测。这些Ni2+和Cu2+配合物的预测抑制作用表明,在像癌症这样的疾病状态中,CYP3A4过表达会减少,从而提高化疗药物的吸附寿命。这个多维度的研究涵盖了分子金属电子学的各个方面,包括它们作为底物模拟抑制剂的应用。研究结果将进一步推动关于具有重要潜力的生物金属化合物的研究。© 2023 Springer Nature Limited.
Metal compounds continued to attract diverse applications due to their malleability in several capacities. In this study, we present our findings on the crystal structures and functional properties of Ni2+ and Cu2+ complexes of N'-(2,6-dichlorophenyl)-N-mesitylformamidine dithiocarbamate (L) comprising [Ni-(L)2] (1) and [Cu-(L)2] (2) with a four-coordinate metal center. We established the two complex structures through 1H and 13C nuclear magnetic resonance (NMR), elemental, and single-crystal X-ray analysis. The analyses showed that the two complexes are isomorphous, having P21/c as a space group and a unit-cell similarity index (π) of 0.002. The two complexes conform to a distorted square planar geometry around the metal centers. The calculated and experimental data, including bond lengths, angles, and NMR values, are similar. Hirshfeld surface analysis revealed the variational contribution of the different types of intermolecular contacts driven by the crystal lattice of the two solvated complexes. Our knowledge of the potential biological implication of these structures enabled us to probe the compounds as prospective CYP3A4 inhibitors. This approach mimics current trends in pharmaceutical design and biomedicine by incorporating potentially active molecules into various media to predict their biological efficacies. The simulations show appreciable binding of compounds 1 and 2 to CYP3A4 with average interaction energies of -97 and -87 kcal/mol, respectively. The protein attains at least five conformational states in the three studied models using a Gaussian Mixture Model-based clustering and free energy prediction. Electric field analysis shows the crucial residues to substrate binding at the active site, enabling CYP3A4 structure to function prediction. The predicted inhibition with these Ni2+ and Cu2+ complexes indicates that CYP3A4 overexpression in a diseased state like cancer would reduce, thereby increasing the chemotherapeutic compounds' shelf-lives for adsorption. This multidimensional study addresses various aspects of molecular metal electronics, including their application as substrate-mimicking inhibitors. The outcome would enable further research on bio-metal compounds of critical potential.© 2023. Springer Nature Limited.