基于放射组学的身体成分分析在肝细胞癌患者1年生存预后中的预测作用。
Prognostic role of radiomics-based body composition analysis for the 1-year survival for hepatocellular carcinoma patients.
发表日期:2023 Aug 17
作者:
Sylvia Saalfeld, Robert Kreher, Georg Hille, Uli Niemann, Mattes Hinnerichs, Osman Öcal, Kerstin Schütte, Christoph J Zech, Christian Loewe, Otto van Delden, Vincent Vandecaveye, Chris Verslype, Bernhard Gebauer, Christian Sengel, Irene Bargellini, Roberto Iezzi, Thomas Berg, Heinz J Klümpen, Julia Benckert, Antonio Gasbarrini, Holger Amthauer, Bruno Sangro, Peter Malfertheiner, Bernhard Preim, Jens Ricke, Max Seidensticker, Maciej Pech, Alexey Surov
来源:
Journal of Cachexia Sarcopenia and Muscle
摘要:
体成分参数在恶性肿瘤患者中具有预后潜力。本研究的目的是分析基于放射学的骨骼肌和脂肪组织参数在晚期肝细胞癌(HCC)患者中的预后潜力。放射组学特征是从297例HCC患者中提取的SORAMIC随机对照试验的后续亚研究。患者接受选择性内部放射治疗(SIRT)与索拉非尼或单独索拉非尼治疗,分为两组:(1)索拉非尼单线治疗组(n = 147)和(2)索拉非尼和SIRT组合治疗组(n = 150)。主要结果是1年生存率。肌肉组织和脂肪组织的分割用于检索881个特征。关联分析和特征清洗获得了每个患者组和组织类型的292个特征。我们将9种特征选择方法与10种特征集合组合方法相结合,构建了90个特征集。我们使用11个分类器构建了990个模型。我们将患者组分为训练和验证集以及测试集,即患者组的三分之一。我们使用训练和验证集确定了最佳的特征选择和分类模型,并将其应用于每个患者组的测试集。对于接受索拉非尼单线治疗的患者,分类的准确率为75.51%,曲线下面积(AUC)为0.7576(95%置信区间[CI]:0.6376-0.8776)。对于接受SIRT和索拉非尼治疗的患者,结果为准确率= 78.00%和AUC = 0.8032(95% CI:0.6930-0.9134)。基于放射组学分析骨骼肌和脂肪组织的参数可以预测晚期HCC患者的1年生存率。放射组学参数的预后价值在接受SIRT和索拉非尼治疗的患者中更高。2023年作者版权所有。由Wiley Periodicals LLC出版的《消瘦、肌萎缩和肌肉》杂志发表。
Parameters of body composition have prognostic potential in patients with oncologic diseases. The aim of the present study was to analyse the prognostic potential of radiomics-based parameters of the skeletal musculature and adipose tissues in patients with advanced hepatocellular carcinoma (HCC).Radiomics features were extracted from a cohort of 297 HCC patients as post hoc sub-study of the SORAMIC randomized controlled trial. Patients were treated with selective internal radiation therapy (SIRT) in combination with sorafenib or with sorafenib alone yielding two groups: (1) sorafenib monotherapy (n = 147) and (2) sorafenib and SIRT (n = 150). The main outcome was 1-year survival. Segmentation of muscle tissue and adipose tissue was used to retrieve 881 features. Correlation analysis and feature cleansing yielded 292 features for each patient group and each tissue type. We combined 9 feature selection methods with 10 feature set compositions to build 90 feature sets. We used 11 classifiers to build 990 models. We subdivided the patient groups into a train and validation cohort and a test cohort, that is, one third of the patient groups.We used the train and validation set to identify the best feature selection and classification model and applied it to the test set for each patient group. Classification yields for patients who underwent sorafenib monotherapy an accuracy of 75.51% and area under the curve (AUC) of 0.7576 (95% confidence interval [CI]: 0.6376-0.8776). For patients who underwent treatment with SIRT and sorafenib, results are accuracy = 78.00% and AUC = 0.8032 (95% CI: 0.6930-0.9134).Parameters of radiomics-based analysis of the skeletal musculature and adipose tissue predict 1-year survival in patients with advanced HCC. The prognostic value of radiomics-based parameters was higher in patients who were treated with SIRT and sorafenib.© 2023 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by Wiley Periodicals LLC.