研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

CREKA修饰的Ceria@Polydopamine仿生纳米游动器具有正性趋化性,可增强渗透力和化学光热肿瘤治疗效果。

Positive Chemotaxis of CREKA-Modified Ceria@Polydopamine Biomimetic Nanoswimmers for Enhanced Penetration and Chemo-photothermal Tumor Therapy.

发表日期:2023 Aug 18
作者: Minxia Zhu, Luwen Zhu, Yuchan You, Mingchen Sun, Feiyang Jin, Yanling Song, Jucong Zhang, Xiaoling Xu, Jiansong Ji, Yongzhong Du
来源: Cellular & Molecular Immunology

摘要:

肿瘤间质压力是药物扩散进入肿瘤深部的最大阻力。生物测量纳米马达突显了增强深部渗透和提高细胞摄取的可能性。然而,控制其方向性仍然难以实现。本文中,我们报道了半胱氨酸-精氨酸-谷氨酸-赖氨酸-丙氨酸(CREKA)修饰的硅酸盐@多多巴米神经句作为肿瘤微环境驱动的纳米级马达,用于积极化疗进入肿瘤深处或向肿瘤细胞靠近。经激光照射后,纳米泳动器迅速耗尽了特异的肿瘤微环境过氧化氢(H2O2)在纳米碗中,形成自动生成的浓度梯度,从而推动纳米泳动器前进(在46°C下速度为9.5μm/s)。此外,纳米碗上对CREKA的不对称修饰可以根据受体-配体相互作用自动重新配置运动方向,导致深部穿透(在多细胞球中达到70μm)并增强抗肿瘤效果,相对于常规纳米医学诱导化疗光热疗法(肿瘤生长抑制率分别为84.2%和56.9%)。因此,控制纳米马达的方向具有显著的潜力,特别是用于具有较高肿瘤间质压力的实体肿瘤的改善抗肿瘤反应。
Tumor interstitial pressure represents the greatest barrier against drug diffusion into the depth of the tumor. Biometric nanomotors highlight the possibility of enhanced deep penetration and improve cellular uptake. However, control of their directionality remains difficult to achieve. Herein, we report cysteine-arginine-glutamic acid-lysine-alanine (CREKA)-modified ceria@polydopamine nanobowls as tumor microenvironment-fueled nanoscale motors for positive chemotaxis into the tumor depth or toward tumor cells. Upon laser irradiation, this nanoswimmer rapidly depletes the tumor microenvironment-specific hydrogen peroxide (H2O2) in the nanobowl, contributing to a self-generated gradient and subsequently propulsion (9.5 μm/s at 46 °C). Moreover, the asymmetrical modification of CREKA on nanobowls could automatically reconfigure the motion direction toward tumor depth or tumor cells in response to receptor-ligand interaction, leading to a deep penetration (70 μm in multicellular spheroids) and enhanced antitumor effects over conventional nanomedicine-induced chemo-photothermal therapy (tumor growth inhibition rate: 84.2% versus 56.9%). Thus, controlling the direction of nanomotors holds considerable potential for improved antitumor responses, especially in solid tumors with high tumor interstitial pressure.