研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

文中将对Oliveria decumbens Vent. (Apiaceae) 进行生物筛选和化学成分研究。

Oliveria decumbens Vent. (Apiaceae): Biological screening and chemical compositions.

发表日期:2023 Aug 16
作者: Arezoo Mirahmad, Salar Hafez Ghoran, Pouya Alipour, Fatemeh Taktaz, Sohail Hassan, Moslem Naderian, Asma Moradalipour, Mehrdad Faizi, Farzad Kobarfard, Seyed Abdulmajid Ayatollahi
来源: JOURNAL OF ETHNOPHARMACOLOGY

摘要:

印度雀稗(Oliveria decumbens Vent.,伞形科)是伊朗唯一一种具有芳香的植物,被传统上用于治疗炎症、胃肠道疾病和感染。鉴于O. decumbens在传统医学中的重要性,我们旨在对该植物进行生物筛选和活性组分的化学分析。将空气干燥的O. decumbens地上部分用乙醇:水(70:30)浸提,然后采用液-液萃取(LLE)技术,依次用正己烷、二氯甲烷(DCM)、乙酸乙酯(EtOAc)、正丁醇(n-BuOH)和水将粗提物分离为不同部分。对粗提物、各部分以及纯化合物进行了多种生物活性的实验。生物测定如下:抗菌活性(对金黄色葡萄球菌、枯草芽胞杆菌、大肠杆菌、铜绿假单胞菌和伤寒沙门氏菌的微板艾拉迈尔蓝测定法;MABA);抗真菌活性(对黑曲霉、黄曲霉、白色念珠菌、报道念珠菌、亚麻矮黄孢菌、犬小孢子菌和红毛癣菌的琼脂镜稀释法);抗利什曼原虫活性(使用96孔板逐渐稀释法对重症利什曼原虫和单纯性利什曼原虫进行测定);抗炎活性(使用呼吸爆发测定法);细胞毒性(对宫颈癌HeLa细胞和正常成纤维细胞BJ进行MTT测定);杀虫活性(对罗丹虫、稻象和米盗的接触毒性法进行测定);杀虫活性(对埃及伊蚊进行测定);抗-DPPH•活性以及对卤虫(Artemia salina)的致命性测定。最后,采用气相色谱联用质谱法(GC-MS)研究了活性部分的植物化学物质。有趣的是,DCM部分在抗菌活性(>80%抑制)、抗利什曼活性(IC50(L. major)= 29.4 μg/mL,IC50(L. tropica)= 30.0 μg/mL)、抗炎活性(IC50 = 15.8 μg/mL)、杀虫活性(>80%抑制)和杀虫活性(对埃及伊蚊的100%抑制)等生物测定中表现出最强活性,其次是正己烷部分。对DCM部分和正己烷部分进行进一步的GC-MS分析,鉴定出12种和14种植物化学组分,与NIST库进行对比。两个部分中均富含百里香酚和樟脑酚。此外,在DCM部分中还检测到了少量的单萜化合物(对甲基对二甲苯酚、百里香醌、3-羟基-β-伊香酮和3-羟基-7,8-二氢-β-伊香醇)、苯丙素(甲氧基丁香酚、巴豆酚和4-[(1E)-3-羟基-1-丙烯基]-2-甲氧基酚)、简单酚(水杨酸和4-甲氧基-2,3,6-三甲基苯酚)和香豆素(6,7-二甲氧基香豆素)。另一方面,除了香豆素和单萜化合物外,正己烷部分还观察到脂肪酸(十四碳四酸、正十六烷酸和亚油酸)和倍半萜烯(石菠油醇)。乙酸乙酯部分对DPPH•自由基的清除作用比其他部分更好(IC50 = 41.4 μg/mL),而在卤虫致死性测定中,粗提物的活性高于正己烷和DCM部分,其LD50分别为385.20、660.28和699.74  μg/mL。令人惊讶的是,粗提物和各部分对被测真菌菌株以及癌细胞和非癌细胞系没有活性。我们的研究结果表明,O. decumbens是一种有多种活性的药用植物,除了对谷类作物害虫具有保护作用之外。为了了解其作用的主要机制,可以通过体外、体内和体内实验来阐明这些不确定因子,甚至可以解释次要次级代谢物的协同行为。版权所有 © 2023 Elsevier B.V. 发布。
Oliveria decumbens Vent. (Apiaceae), a single aromatic species in Iran, is traditionally used for healing inflammation, gastrointestinal disorders, and infections.Regarding the importance of O. decumbens in traditional medicine, we aimed to set out the plant's biological screening and analyze the chemical components of the active fractions.Air-dried O. decumbens aerial parts were macerated by ethanol:water (70:30). Using a liquid-liquid extraction (LLE) technique, n-hexane, dichloromethane (DCM), ethyl acetate (EtOAc), n-butanol (n-BuOH), and water were successively used to fractionate the crude extract into different portions. Various biological activities were performed on the crude extract, fractions, and some experiments on pure compounds. The bioassays were as follows: antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhi (using microplate alamar blue assay; MABA), antifungal activity against Aspergillus niger, A. fumigatus, Candida albicans, C. glabarate, Fusarium lini, Microspurum canis, and Trichophyton rubrum (using agar tube dilution method), antileishmanial activity against Leishmania major and L. tropica using a 96-well serial dilution protocol, anti-inflammatory activity using the respiratory burst assay, cytotoxicity against HeLa (cervical cancer) and BJ (normal fibroblast) cells using MTT assay, insecticidal activity against Tribolium castaneum, Sitophilus oryzae, and Rhyzopertha dominica (using the contact toxicity method), larvicidal activity against Aedes aegypti, anti-DPPH• activity, and cytotoxicity against brine shrimp (Artemia salina) in a lethality assay. Eventually, the phytochemicals from the active fractions were studied by gas chromatography coupled with mass spectrometry (GC-MS).Interestingly, the DCM fraction was the most active, followed by the n-hexane fraction in the biological assays, including antibacterial (>80% inhibition), leishmanicidal (IC50 (L.major) = 29.4 μg/mL, and IC50 (L.tropica) = 30.0 μg/mL), anti-inflammatory (IC50 = 15.8 μg/mL), insecticidal (>80% inhibition), and larvicidal (100% inhibition of A. aegypti) assays. Further GC-MS analysis of the DCM and n-hexane fractions resulted in the characterization of 12 and 14 phytoconstituents, respectively, compared with the NIST library. Thymol and carvacrol were abundant in both fractions. To lesser quantities, the presence of monoterpenoids (p-cymen-8-ol, thymoquinone, 3-hydroxy-β-damascone, and 3-hydroxy-7,8-dihydro-β-ionol), phenylpropanoids (methoxyeugenol, elemicin, and 4-[(1E)-3-hydroxy-1-propenyl]-2-methoxyphanol, simple phenolics (salicylic acid and 4-methoxy-2,3,6-trimethyl-phenol), and a coumarin (6,7-dimethoxy-coumarin) were detected in the DCM fraction. On the other hand, besides a coumarin and monoterpenoids, the fatty acids (tetradecanoid acid, n-hexadecanoic acid, and linolenic acid) and a sesquiterpene (spathulenol) were observed in the n-hexane fraction. The EtOAc fraction scavenged the DPPH• radicals better than other fractions (IC50 = 41.4 μg/mL), while in brine shrimp lethality assay, the crude extract was more active than n-hexane and DCM fractions with LD50 = 385.20, 660.28, and 699.74 μg/mL, respectively. Surprisingly, the crude extract and fractions were ineffective against assayed fungal strains and tested cancer and non-cancer cell lines.Our findings showed that O. decumbens deserves to be a multi-bioactive medicinal plant, besides its ability for cereal protection against pests. To understand the principal mechanism of action, in silico, in vitro, and in vivo experiments may clarify the ambiguities and even figure out the synergistic behavior of the minor secondary metabolites.Copyright © 2023. Published by Elsevier B.V.