研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

利用深度学习和常规的H&E染色技术预测HPV相关性,能够对咽峡癌患者进行细致的分层。

Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients.

发表日期:2023 Aug 19
作者: Sebastian Klein, Nora Wuerdemann, Imke Demers, Christopher Kopp, Jennifer Quantius, Arthur Charpentier, Yuri Tolkach, Klaus Brinker, Shachi Jenny Sharma, Julie George, Jochen Hess, Fabian Stögbauer, Martin Lacko, Marijn Struijlaart, Mari F C M van den Hout, Steffen Wagner, Claus Wittekindt, Christine Langer, Christoph Arens, Reinhard Buettner, Alexander Quaas, Hans Christian Reinhardt, Ernst-Jan Speel, Jens Peter Klussmann
来源: Stem Cell Research & Therapy

摘要:

人类乳头瘤病毒(HPV)相关的扁桃体咽部鳞状细胞癌(OPSCC)是一个在西方国家发病率上升的OPSCC亚组,总体预后良好。多项证据表明,HPV相关肿瘤不是同质性肿瘤实体,强调了准确的预后生物标志物的必要性。在这项回顾性、多机构研究中,涉及了4个中心和一个数据库的906名患者,我们开发了一个名为OPSCCnet的深度学习算法,用于分析标准H&E染色的计算,以获得与预后相关的患者水平评分,并将其与联合HPV-DNA和p16状态进行比较。在将OPSCCnet与HPV状态进行比较时,该算法表现出良好的整体性能,测试组(n = 639)的平均接受者操作特征曲线下面积(AUROC)= 0.83(95% CI = 0.77-0.9),通过在HPV阳性类别的概率方差上应用固定阈值对案例进行筛选,AUROC可以提高到0.88,这是HPV异质性的潜在替代标志物。OPSCCnet可以用作筛选工具,在各种临床情况下优于黄金标准的HPV测试(OPSCCnet:五年生存率:96% [95% CI = 90-100%];HPV测试:五年生存率:80% [95% CI = 71-90%])。这可以通过三分级阈值的多变量分析得到证实(OPSCCnet:高HR = 0.15 [95% CI = 0.05-0.44],中等HR = 0.58 [95% CI = 0.34-0.98],p = 0.043,Cox比例风险模型,n = 211;HPV测试:HR = 0.29 [95% CI = 0.15-0.54],p < 0.001,Cox比例风险模型,n = 211)。总之,我们的研究结果表明,通过分析标准的吉吉像素血红蛋白和嗜酸性染色(H&E)组织切片图像,OPSCCnet在各种临床情况下显示出优于p16/HPV-DNA检测的性能,特别是在准确分层这些患者方面。© 2023。Springer Nature有限公司。
Human Papilloma Virus (HPV)-associated oropharyngeal squamous cell cancer (OPSCC) represents an OPSCC subgroup with an overall good prognosis with a rising incidence in Western countries. Multiple lines of evidence suggest that HPV-associated tumors are not a homogeneous tumor entity, underlining the need for accurate prognostic biomarkers. In this retrospective, multi-institutional study involving 906 patients from four centers and one database, we developed a deep learning algorithm (OPSCCnet), to analyze standard H&E stains for the calculation of a patient-level score associated with prognosis, comparing it to combined HPV-DNA and p16-status. When comparing OPSCCnet to HPV-status, the algorithm showed a good overall performance with a mean area under the receiver operator curve (AUROC) = 0.83 (95% CI = 0.77-0.9) for the test cohort (n = 639), which could be increased to AUROC = 0.88 by filtering cases using a fixed threshold on the variance of the probability of the HPV-positive class - a potential surrogate marker of HPV-heterogeneity. OPSCCnet could be used as a screening tool, outperforming gold standard HPV testing (OPSCCnet: five-year survival rate: 96% [95% CI = 90-100%]; HPV testing: five-year survival rate: 80% [95% CI = 71-90%]). This could be confirmed using a multivariate analysis of a three-tier threshold (OPSCCnet: high HR = 0.15 [95% CI = 0.05-0.44], intermediate HR = 0.58 [95% CI = 0.34-0.98] p = 0.043, Cox proportional hazards model, n = 211; HPV testing: HR = 0.29 [95% CI = 0.15-0.54] p < 0.001, Cox proportional hazards model, n = 211). Collectively, our findings indicate that by analyzing standard gigapixel hematoxylin and eosin (H&E) histological whole-slide images, OPSCCnet demonstrated superior performance over p16/HPV-DNA testing in various clinical scenarios, particularly in accurately stratifying these patients.© 2023. Springer Nature Limited.