研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

通过 Förster 共振能量转移技术检测细胞外小囊泡膜蛋白以实现肺癌的准确、便捷诊断。

Accurate and Convenient Lung Cancer Diagnosis through Detection of Extracellular Vesicle Membrane Proteins via Förster Resonance Energy Transfer.

发表日期:2023 Aug 29
作者: Shuting Xiao, Yi Yao, Shuilin Liao, Bin Xu, Xue Li, Yuxiao Zhang, Lei Zhang, Qiang Chen, Haoneng Tang, Qibin Song, Ming Dong
来源: Protein & Cell

摘要:

肿瘤源性细胞外囊泡(EVs)有望用于早期癌症监测。然而,从患者的液体活检中分离和分析EVs是具有挑战性的。为此,我们设计了一种基于Förster共振能量转移(FRET)信号的EV膜蛋白检测系统(EV-MPDS),通过其中的适配体量子点和AIEgen染料之间的FRET信号,消除了EV的提取和纯化,从而方便地诊断肺癌。在80个临床样本的队列中,这种系统相对于ELISA检测方法,在癌症诊断的准确性(100%对比65%)和敏感性(100%对比55%)方面表现出增强的效果。通过使用机器学习分析系统全面分析五个生物标志物,提高了早期筛查的准确性(从96.4%提高到100%)。基于FRET的肿瘤EV-MPDS因此是一种无需分离、低体积(1 μL)且高精准度的方法,为肺癌诊断和早期筛查提供了潜在机会。
Tumor-derived extracellular vesicles (EVs) are promising to monitor early stage cancer. Unfortunately, isolating and analyzing EVs from a patient's liquid biopsy are challenging. For this, we devised an EV membrane proteins detection system (EV-MPDS) based on Förster resonance energy transfer (FRET) signals between aptamer quantum dots and AIEgen dye, which eliminated the EV extraction and purification to conveniently diagnose lung cancer. In a cohort of 80 clinical samples, this system showed enhanced accuracy (100% versus 65%) and sensitivity (100% versus 55%) in cancer diagnosis as compared to the ELISA detection method. Improved accuracy of early screening (from 96.4% to 100%) was achieved by comprehensively profiling five biomarkers using a machine learning analysis system. FRET-based tumor EV-MPDS is thus an isolation-free, low-volume (1 μL), and highly accurate approach, providing the potential to aid lung cancer diagnosis and early screening.