深度学习模型提高了对乳腺癌肿瘤浸润淋巴细胞的评估和治疗反应预测的准确性。
Deep learning model improves tumor-infiltrating lymphocyte evaluation and therapeutic response prediction in breast cancer.
发表日期:2023 Aug 30
作者:
Sangjoon Choi, Soo Ick Cho, Wonkyung Jung, Taebum Lee, Su Jin Choi, Sanghoon Song, Gahee Park, Seonwook Park, Minuk Ma, Sérgio Pereira, Donggeun Yoo, Seunghwan Shin, Chan-Young Ock, Seokhwi Kim
来源:
npj Breast Cancer
摘要:
肿瘤浸润淋巴细胞(TILs)被认为是乳腺癌肿瘤微环境中的关键参与者,但是病理医生之间存在较大的观察者间的差异,阻碍了其作为生物标志物的应用。我们开发了一种基于深度学习(DL)的TIL分析器,用于评估乳腺癌中的间质TIL(sTILs)。三名病理学家评估了402个乳腺癌全切片图像,并解读了sTIL评分。DL模型在210个显示sTIL评分差异小于10个百分点的病例(52.2%)中进行了独立的性能评估,与病理医生的评分相比,得到了0.755的一致性相关系数(95%置信区间[CI],0.693-0.805)。对于226个显示病理医生评分与DL模型之间存在10个百分点或更大差异的切片(56.2%),进行了修订。DL辅助下不一致的病例数量降至116个(28.9%)(p < 0.001)。DL辅助还增加了每两名病理学家之间sTIL评分的一致性相关系数。在经新辅助化疗的三阴性和人类表皮生长因子受体2(HER2)阳性乳腺癌患者中,DL辅助修订明显强调了对应者的更高sTIL评分(26.8 ± 19.6 vs. 19.0 ± 16.4,p = 0.003)。此外,DL辅助修订揭示了sTIL高表达肿瘤(sTIL ≥ 50)与化疗反应的相关性(奇异比1.28 [95%置信区间,1.01-1.63],p = 0.039)。通过提高病理学家之间sTIL解读的一致性,并预测新辅助化疗反应,在这里我们报道了DL工具作为乳腺癌评估中sTIL评分的参考价值。 © 2023. Springer Nature Limited.
Tumor-infiltrating lymphocytes (TILs) have been recognized as key players in the tumor microenvironment of breast cancer, but substantial interobserver variability among pathologists has impeded its utility as a biomarker. We developed a deep learning (DL)-based TIL analyzer to evaluate stromal TILs (sTILs) in breast cancer. Three pathologists evaluated 402 whole slide images of breast cancer and interpreted the sTIL scores. A standalone performance of the DL model was evaluated in the 210 cases (52.2%) exhibiting sTIL score differences of less than 10 percentage points, yielding a concordance correlation coefficient of 0.755 (95% confidence interval [CI], 0.693-0.805) in comparison to the pathologists' scores. For the 226 slides (56.2%) showing a 10 percentage points or greater variance between pathologists and the DL model, revisions were made. The number of discordant cases was reduced to 116 (28.9%) with the DL assistance (p < 0.001). The DL assistance also increased the concordance correlation coefficient of the sTIL score among every two pathologists. In triple-negative and human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients who underwent the neoadjuvant chemotherapy, the DL-assisted revision notably accentuated higher sTIL scores in responders (26.8 ± 19.6 vs. 19.0 ± 16.4, p = 0.003). Furthermore, the DL-assistant revision disclosed the correlation of sTIL-high tumors (sTIL ≥ 50) with the chemotherapeutic response (odd ratio 1.28 [95% confidence interval, 1.01-1.63], p = 0.039). Through enhancing inter-pathologist concordance in sTIL interpretation and predicting neoadjuvant chemotherapy response, here we report the utility of the DL-based tool as a reference for sTIL scoring in breast cancer assessment.© 2023. Springer Nature Limited.