研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

非癌症老年人持续使用阿片类药物的预测因素:一项回顾性队列研究。

Predictors of persistent opioid use in non-cancer older adults: a retrospective cohort study.

发表日期:2023 Sep 01
作者: Kebede Beyene, Hoda Fahmy, Amy Hai Yan Chan, Andrew Tomlin, Gary Cheung
来源: AGE AND AGEING

摘要:

近年来,长期使用阿片类药物及其相关不良结果的发生率显著增加。关于老年人长期使用阿片类药物的研究较有限。我们的目标是确定无阿片类药物使用史、无癌症诊断的老年人中长期或持续使用阿片类药物的发生率及预测因素。本研究采用新西兰的五个国家行政医疗数据库进行一项回顾性队列研究。我们纳入了在2013年1月至2018年6月之间开始使用阿片类治疗的所有无阿片类药物使用史的老年人(≥65岁)。感兴趣的结果是持续使用阿片类药物,定义为在首次使用阿片类药物后的91-180天内持续开具≥1份阿片类处方。采用多变量 logistic 回归分析预测持续使用阿片类药物。最终样本包括268,857名无阿片类药物使用史的老年人,其中5,849人(2.2%)发展出持续使用阿片类药物。我们确定了许多持续使用阿片类药物的预测因素。芬太尼的使用(调整后的优势比(AOR)= 3.61;95%可信区间(CI)2.63-4.95)、缓释型阿片类药物的使用(AOR = 3.02;95%CI 2.78-3.29)、强效阿片类药物的使用(AOR = 2.03;95%CI 1.55-2.65)、Charlson共病得分≥3(AOR = 2.09;95%CI 1.78-2.46)、物质滥用史(AOR = 1.52;95%CI 1.35-1.72)、生活在社会经济最贫困地区(AOR = 1.40;95%CI 1.27-1.54),以及抗癫痫药物(AOR = 2.07;95%CI 1.89-2.26)、非阿片类镇痛药(AOR = 2.05;95%CI 1.89-2.21)、抗精神病药物(AOR = 1.96;95%CI 1.78-2.17)或抗抑郁药物(AOR = 1.50;95%CI 1.41-1.59)的使用是持续使用阿片类药物的最强预测因素。相当比例的患者发展出持续使用阿片类药物,并且有几个因素与持续使用阿片类药物有关。这些发现将使医疗服务提供者和决策者能够针对早期干预来预防持续使用阿片类药物及相关不良事件。© 2023 作者。由牛津大学出版社代表英国老年学学会发表。保留一切权利。如需权限,请发送电子邮件至:journals.permissions@oup.com。
Long-term opioid use and associated adverse outcomes have increased dramatically in recent years. Limited research is available on long-term opioid use in older adults.We aimed to determine the incidence and predictors of long-term or persistent opioid use (POU) amongst opioid-naïve older adults without a cancer diagnosis.This was a retrospective cohort study using five national administrative healthcare databases in New Zealand. We included all opioid-naïve older adults (≥65 years) who were initiated on opioid therapy between January 2013 and June 2018. The outcome of interest was POU, defined as having continuously filled ≥1 opioid prescription within 91-180 days after the index opioid prescription. Multivariable logistic regression was used to examine the predictors of POU.The final sample included 268,857 opioid-naïve older adults; of these, 5,849(2.2%) developed POU. Several predictors of POU were identified. The use of fentanyl (adjusted odds ratio (AOR) = 3.61; 95% confidence interval (CI) 2.63-4.95), slow-release opioids (AOR = 3.02; 95%CI 2.78-3.29), strong opioids (AOR = 2.03; 95%CI 1.55-2.65), Charlson Comorbidity Score ≥ 3 (AOR = 2.09; 95% CI 1.78-2.46), history of substance abuse (AOR = 1.52; 95%CI 1.35-1.72), living in most socioeconomically deprived areas (AOR = 1.40; 95%CI 1.27-1.54), and anti-epileptics (AOR = 2.07; 95%CI 1.89-2.26), non-opioid analgesics (AOR = 2.05; 95%CI 1.89-2.21), antipsychotics (AOR = 1.96; 95%CI 1.78-2.17) or antidepressants (AOR = 1.50; 95%CI 1.41-1.59) medication use were the strongest predictors of POU.A significant proportion of patients developed POU, and several factors were associated with POU. The findings will enable healthcare providers and policymakers to target early interventions to prevent POU and related adverse events.© The Author(s) 2023. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.