研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

梯度平台:一种用于空间生物学应用的微流控阵列,可按需生成可重构梯度。

Griddient: a microfluidic array to generate reconfigurable gradients on-demand for spatial biology applications.

发表日期:2023 Sep 09
作者: Cristina Sanchez-de-Diego, María Virumbrales-Muñoz, Brock Hermes, Terry D Juang, Duane S Juang, Jeremiah Riendeau, Emmanuel Contreras Guzman, Catherine A Reed-McBain, Sara Abizanda-Campo, Janmesh Patel, Nicholas J Hess, Melissa C Skala, David J Beebe, Jose M Ayuso
来源: CYTOKINE & GROWTH FACTOR REVIEWS

摘要:

生物组织是高度有组织的结构,其空间-时间梯度(如营养、低氧、细胞因子)调节着多种生理和病理过程,包括炎症、组织再生、胚胎发育和癌症进展。目前的体外技术难以捕捉这些短暂的微环境梯度的复杂性,无法对梯度曲线进行动态控制,并且在高通量应用方面复杂且不适用。因此,我们设计了一种名为Griddent的用户友好平台,具有在三维微环境中产生可控可逆梯度的能力。我们的平台包括一个由32个微流控腔室组成的阵列,通过每个储液井底部的扩散口连接到一个384孔阵列。扩散口经过优化,以确保梯度的稳定性并方便手动微量吸管装样。该平台与分子和功能空间生物学、光学和荧光显微术兼容。在本研究中,我们使用该平台研究了癌症进展。 © 2023. Springer Nature Limited.
Biological tissues are highly organized structures where spatial-temporal gradients (e.g., nutrients, hypoxia, cytokines) modulate multiple physiological and pathological processes including inflammation, tissue regeneration, embryogenesis, and cancer progression. Current in vitro technologies struggle to capture the complexity of these transient microenvironmental gradients, do not provide dynamic control over the gradient profile, are complex and poorly suited for high throughput applications. Therefore, we have designed Griddent, a user-friendly platform with the capability of generating controllable and reversible gradients in a 3D microenvironment. Our platform consists of an array of 32 microfluidic chambers connected to a 384 well-array through a diffusion port at the bottom of each reservoir well. The diffusion ports are optimized to ensure gradient stability and facilitate manual micropipette loading. This platform is compatible with molecular and functional spatial biology as well as optical and fluorescence microscopy. In this work, we have used this platform to study cancer progression.© 2023. Springer Nature Limited.