研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

基于碳纳米纤维、金属有机框架和磁性氧化石墨烯的新型电化学乳腺癌检测生物传感器。

Novel electrochemical biosensor for breast cancer detection, based on a nanocomposite of carbon nanofiber, metal-organic framework, and magnetic graphene oxide.

发表日期:2023 Sep 06
作者: Emadoddin Amin Sadrabadi, Ali Benvidi, Mostafa Azimzadeh, Leila Asgharnejad, Amin Shiralizadeh Dezfuli, Patricia Khashayar
来源: BIOELECTROCHEMISTRY

摘要:

在这项研究中,我们提出了一种基于磁性棒碳浆电极的新型微RNA生物传感器,利用一种相对较新的MOF结构作为基底来检测乳腺癌。制造适用于临床诊断的生物传感器的主要目标是在复杂环境中测量非常低的微RNA155含量。因此,我们使用了不同材料的组合,包括碳纳米纤维、CuBTC-AIA(CuMOF)和Fe@rGO,以提高电极表面积与体积之比并促进电子传递过程。在此方法中,我们使用1-吡啶丁酸N-羟基琥珀酰亚胺酯将微RNA与电极表面结合。通过循环伏安法、电化学阻抗谱和差示脉冲伏安法在电位范围内研究了修饰电极表面上的杂交过程,其中累积的血红木素是电活性的。在最佳条件下,实现了非常低的检测限为0.08 fM和适当的动态范围为0.2 fM-500 pM。经过检验,制备的传感器在使用不同类型的错配靶序列时具有可重复性和选择性。最后,采用真实的人体血清样本验证了纳米生物传感器在没有任何明显干扰的情况下检测微RNA155的能力。版权所有 © 2023 Elsevier B.V. All rights reserved.
In this study, we present the newly developed a novel microRNA biosensor based on magnetic rod carbon paste electrodes for breast cancer detection by using a relatively new MOF structure as a substrate. The major goal of manufacturing biosensors, suitable for clinical diagnostics, is to measure very low amount of microRNA 155 in complex environments. Therefore, we used a combination of different materials, including carbon nanofibers, CuBTC-AIA (CuMOF), and Fe@rGO, to improve the electrode surface-to-volume ratio and facilitate the electron transfer process. In this method, 1-pyrenebutyric acid N-hydroxysuccinimide ester was used to bind the microRNAs to the electrode surface. The hybridization process on the modified electrode surface was investigated using cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry across the potential range, in which the accumulated hematoxylin was electroactive. Under optimal conditions, a very low detection limit of 0.08 fM and an adequate dynamic range of 0.2 fM-500 pM were achieved. The fabricated sensor was reported to be reproducible and selective when tested using different types of mismatched target sequences. And finally, the real human serum samples were used to confirm the capability of the nanobiosensor to detect microRNA 155 without any significant interference from other molecules and components.Copyright © 2023 Elsevier B.V. All rights reserved.