采用新型无标记荧光法揭示和检测乳腺癌。
Delineation and detection of breast cancer using novel label-free fluorescence.
发表日期:2023 Sep 16
作者:
Alaaeldin Mahmoud, Yasser H El-Sharkawy
来源:
MOLECULAR & CELLULAR PROTEOMICS
摘要:
乳腺癌(BC)的准确诊断在临床病理分析和确保手术边界准确以防止复发中起着关键作用。激光诱导荧光(LIF)技术对组织生物化学具有高敏感性,是一种非侵入性乳腺癌识别的潜在工具。本研究利用激发乳腺癌标本的高光谱(HS)成像数据,通过与正常组织比较改变的荧光特性来检测恶性病变。首先,我们采用了高光谱相机和宽频谱光来评估乳腺癌样本的吸收。值得注意的是,在440-460纳米波长范围内观察到了显著的吸收差异。随后,我们开发了一种专门用于乳腺癌检测的LIF系统,利用450纳米波长的低功率蓝激光源测试了十个乳腺癌样本。我们的研究结果显示,乳腺标本的荧光分布,携带了分子尺度结构信息,可作为识别乳腺肿瘤的有效标记。具体而言,561纳米的发射在肿瘤和正常组织的荧光信号强度中变化最大,可作为一种光学预测性生物标记物。为了提高乳腺癌识别,我们提出了一种结合轮廓映射和K均值聚类(K-mc,K = 8)的高光谱发射图像数据分析的先进图像分类技术。这项探索性工作展示了利用光学技术,特别是我们的LIF技术结合先进的K-mc方法,改善“体内”疾病表征的潜在途径,有助于乳腺癌的早期诊断。© 2023. BioMed Central Ltd.,属于斯普林格自然出版集团的一部分。
Accurate diagnosis of breast cancer (BC) plays a crucial role in clinical pathology analysis and ensuring precise surgical margins to prevent recurrence.Laser-induced fluorescence (LIF) technology offers high sensitivity to tissue biochemistry, making it a potential tool for noninvasive BC identification. In this study, we utilized hyperspectral (HS) imaging data of stimulated BC specimens to detect malignancies based on altered fluorescence characteristics compared to normal tissue. Initially, we employed a HS camera and broadband spectrum light to assess the absorbance of BC samples. Notably, significant absorbance differences were observed in the 440-460 nm wavelength range. Subsequently, we developed a specialized LIF system for BC detection, utilizing a low-power blue laser source at 450 nm wavelength for ten BC samples.Our findings revealed that the fluorescence distribution of breast specimens, which carries molecular-scale structural information, serves as an effective marker for identifying breast tumors. Specifically, the emission at 561 nm exhibited the greatest variation in fluorescence signal intensity for both tumor and normal tissue, serving as an optical predictive biomarker. To enhance BC identification, we propose an advanced image classification technique that combines image segmentation using contour mapping and K-means clustering (K-mc, K = 8) for HS emission image data analysis.This exploratory work presents a potential avenue for improving "in-vivo" disease characterization using optical technology, specifically our LIF technique combined with the advanced K-mc approach, facilitating early tumor diagnosis in BC.© 2023. BioMed Central Ltd., part of Springer Nature.