通过减少ACOD1的代谢重编程,增强人工诱导多能干细胞衍生的CAR-巨噬细胞在实体肿瘤中的功能。
Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors.
发表日期:2023 Sep 18
作者:
Xudong Wang, Siyu Su, Yuqing Zhu, Xiaolong Cheng, Chen Cheng, Leilei Chen, Anhua Lei, Li Zhang, Yuyan Xu, Dan Ye, Yi Zhang, Wei Li, Jin Zhang
来源:
Epigenetics & Chromatin
摘要:
巨噬细胞的促炎状态取决于其代谢情况,从根本上影响其抗击肿瘤细胞的能力。在这项研究中,我们通过进行代谢基因敲除CRISPR筛选发现KEAP1和ACOD1是巨噬细胞促炎状态的强效调节因子。我们展示了在我们诱导多能干细胞衍生的CAR-巨噬细胞(CAR-iMAC)平台中,ACOD1敲除的巨噬细胞向促炎状态发生了强烈和持久的偏向,这表现为增加的活性氧(ROS)产生,更强效的吞噬作用以及对体外癌细胞的增强细胞毒功能。在卵巢或胰腺癌小鼠模型中,ACOD1缺失的CAR-iMAC具有增强的抑制肿瘤能力,从而提高了生存率。此外,将ACOD1缺失的CAR-iMAC与免疫检查点抑制剂(ICI),如抗CD47或抗PD1抗体相结合,产生更强的抑制肿瘤效果。从机制上说,ACOD1的缺失降低了免疫代谢物顶替转氨酸水平,使得KEAP1能够阻止NRF2进入细胞核,从而激活抗炎程序。因此,本研究为肿瘤免疫治疗中的靶向ACOD1提供了原理证明,并引入了代谢工程的人类iPSC衍生CAR-iMAC细胞,其具有增强的极化和抗肿瘤功能,可用于细胞转移疗法。© 2023. Springer Nature Limited.
The pro-inflammatory state of macrophages, underpinned by their metabolic condition, is essentially affecting their capacity of combating tumor cells. Here we find, via a pooled metabolic gene knockout CRISPR screen that KEAP1 and ACOD1 are strong regulators of the pro-inflammatory state in macrophages. We show that ACOD1 knockout macrophages, generated in our induced pluripotent stem cell-derived CAR-macrophage (CAR-iMAC) platform, are strongly and persistently polarized toward the pro-inflammatory state, which manifests in increased reactive oxygen species (ROS) production, more potent phagocytosis and enhanced cytotoxic functions against cancer cells in vitro. In ovarian or pancreatic cancer mouse models, ACOD1-depleted CAR-iMACs exhibit enhanced capacity in repressing tumors, leading to increased survival. In addition, combining ACOD1-depleted CAR-iMACs with immune checkpoint inhibitors (ICI), such as anti-CD47 or anti-PD1 antibodies, result in even stronger tumor suppressing effect. Mechanistically, the depletion of ACOD1 reduces levels of the immuno-metabolite itaconate, allowing KEAP1 to prevent NRF2 from entering the nucleus to activate an anti-inflammatory program. This study thus lays down the proof of principle for targeting ACOD1 in myeloid cells for cancer immunotherapy and introduces metabolically engineered human iPSC-derived CAR-iMACs cells with enhanced polarization and anti-tumor functions in adoptive cell transfer therapies.© 2023. Springer Nature Limited.