使用增强超声检查定量肝细胞癌血管动力学,以实现LI-RADS的应用。
Quantification of Hepatocellular Carcinoma Vascular Dynamics With Contrast-Enhanced Ultrasound for LI-RADS Implementation.
发表日期:2023 Sep 19
作者:
Connor Krolak, Manjiri Dighe, Alicia Clark, Marissa Shumaker, Raymond Yeung, Richard G Barr, Yuko Kono, Michalakis Averkiou
来源:
INVESTIGATIVE RADIOLOGY
摘要:
本研究的目的是描述一种全面的增强超声造影(CEUS)成像方案和分析方法,以定量的方式实施CEUS LI-RADS(肝脏成像报告和数据系统)。经过验证的方法通过前瞻性单中心研究旨在简化CEUS LI-RADS评估,消除观察者偏差,并可能提高CEUS LI-RADS的敏感性。本前瞻性单中心研究纳入肝细胞癌患者(2021年4月至2022年6月;N = 31;平均年龄±标准差,67±6岁;男性24人/女性7人)。对每位患者使用关节式支臂来保持探头,采集至少2个跨度超过5分钟的CEUS环路,扫描不同的病变平面。自动呼吸门控和运动补偿算法消除了由呼吸运动引起的误差。在对比度和基本图像中测量病变的长轴,以捕捉结节大小。对线性化数据进行的时间-强度曲线分析的参数化处理提供了从上升时间(RT)和消退度(DW)参数中提取的时间-强度曲线的定量信息,用于量化进入和清除动力学。对于每个病变,对病变和实质组织的RT进行Welch t检验以确认统计学上的显著差异。计算病变清除度的自助法95%置信区间的P值,用于量化病变清除。在两次注射之间,计算RT、DW和rDW的变异系数(COV),以评估这些指标的可重复性。进行斯皮尔曼等级相关性检验,评估尺寸、RT、DW和rDW值之间的统计相关性。病变的平均直径±标准差为23±8 mm。所有病变的RT,捕捉到动脉期高增强,较周围肝实质的RT较短(P < 0.05)。所有病变在2分钟和5分钟时间点上都显示出显著的(P < 0.05)但不同程度的清除,以rDW量化。病变和周围肝实质的RT的COV都为11%,2分钟和5分钟的DW和rDW的COV在22%至31%之间。发现了病变与肝实质的RT之间以及病变RT与病变DW之间在2分钟和5分钟时间点上的统计相关性(P < 0.05)。提出的成像方案和分析方法提供了描述被分类为肝细胞癌的LI-RADS 5病变的动态血管模式的强大的定量指标。冲击流过度的RT量化了动脉期高增强,而DW和rDW参数则量化了线性化CEUS强度数据的清除。这种独特的方法首次能够以定量的方式实施CEUS-LIRADS方案,并消除其当前存在的定性和主观评估问题。Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.
The aim of this study is to describe a comprehensive contrast-enhanced ultrasound (CEUS) imaging protocol and analysis method to implement CEUS LI-RADS (Liver Imaging Reporting and Data System) in a quantifiable manner. The methods that are validated with a prospective single-center study aim to simplify CEUS LI-RADS evaluation, remove observer bias, and potentially improve the sensitivity of CEUS LI-RADS.This prospective single-center study enrolled patients with hepatocellular carcinoma (April 2021-June 2022; N = 31; mean age ± SD, 67 ± 6 years; 24 men/7 women). For each patient, at least 2 CEUS loops spanning over 5 minutes were collected for different lesion scan planes using an articulated arm to hold the transducer. Automatic respiratory gating and motion compensation algorithms removed errors due to breathing motion. The long axis of the lesion was measured in the contrast and fundamental images to capture nodule size. Parametric processing of time-intensity curve analysis on linearized data provided quantifiable information of the wash-in and washout dynamics via rise time (RT) and degree of washout (DW) parameters extracted from the time-intensity curve, respectively. A Welch t test was performed between lesion and parenchyma RT for each lesion to confirm statistically significant differences. P values for bootstrapped 95% confidence intervals of the relative degree of washout (rDW), ratio of DW between the lesion and surrounding parenchyma, were computed to quantify lesion washout. Coefficient of variation (COV) of RT, DW, and rDW was calculated for each patient between injections for both the lesion and surrounding parenchyma to gauge reproducibility of these metrics. Spearman rank correlation tests were performed among size, RT, DW, and rDW values to evaluate statistical dependence between the variables.The mean ± SD lesion diameter was 23 ± 8 mm. The RT for all lesions, capturing arterial phase hyperenhancement, was shorter than that of surrounding liver parenchyma (P < 0.05). All lesions also demonstrated significant (P < 0.05) but variable levels of washout at both 2-minute and 5-minute time points, quantified in rDW. The COV of RT for the lesion and surrounding parenchyma were both 11%, and the COV of DW and rDW at 2 and 5 minutes ranged from 22% to 31%. Statistically significant relationships between lesion and parenchyma RT and between lesion RT and lesion DW at the 2- and 5-minute time points were found (P < 0.05).The imaging protocol and analysis method presented provide robust, quantitative metrics that describe the dynamic vascular patterns of LI-RADS 5 lesions classified as hepatocellular carcinomas. The RT of the bolus transit quantifies the arterial phase hyperenhancement, and the DW and rDW parameters quantify the washout from linearized CEUS intensity data. This unique methodology is able to implement the CEUS-LIRADS scheme in a quantifiable manner for the first time and remove its existing issues of currently being qualitative and suffering from subjective evaluations.Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.