SCAR: 单个细胞和空间定位癌症资源。
SCAR: Single-cell and Spatially-resolved Cancer Resources.
发表日期:2023 Sep 22
作者:
Yushan Deng, Peixin Chen, Jiedan Xiao, Mengrou Li, Jiayi Shen, Siying Qin, Tengfei Jia, Changxiao Li, Ashley Chang, Wensheng Zhang, Hebin Liu, Ruidong Xue, Ning Zhang, Xiangdong Wang, Li Huang, Dongsheng Chen
来源:
NUCLEIC ACIDS RESEARCH
摘要:
测序和成像技术的进步为揭示细胞异质性和开发新的癌症免疫治疗策略提供了独特的机会。迫切需要一个资源来有效整合大量的转录组学分析数据,全面探索癌组织的异质性和肿瘤微环境。在这个背景下,我们开发了单细胞和空间定位癌症资源(SCAR)数据库,该数据库是一个融合了肿瘤空间定位和单细胞转录组的平台,可以免费访问,网址为http://8.142.154.29/SCAR2023 或 http://scaratlas.com。SCAR数据库包含21种肿瘤组织的空间转录组数据和11,301,352个单细胞转录组数据,涵盖了395种癌症亚型和多种组织、器官样和细胞系。该资源提供了多种功能模块,以多个层面解答关键的癌症研究问题,包括筛选肿瘤细胞类型、代谢特征、细胞间通信和基因表达模式在肿瘤微环境中的作用。此外,SCAR还能分析生物标志物表达模式和细胞发育轨迹。SCAR还提供了基于34种前沿组学技术的多维数据集的全面分析,成为深入挖掘和理解细胞异质性和空间定位的重要工具。这一资源的意义延伸到癌症生物学研究和癌症免疫治疗的发展。© 2023 作者、牛津大学出版社代表核酸研究发表。
Advances in sequencing and imaging technologies offer a unique opportunity to unravel cell heterogeneity and develop new immunotherapy strategies for cancer research. There is an urgent need for a resource that effectively integrates a vast amount of transcriptomic profiling data to comprehensively explore cancer tissue heterogeneity and the tumor microenvironment. In this context, we developed the Single-cell and Spatially-resolved Cancer Resources (SCAR) database, a combined tumor spatial and single-cell transcriptomic platform, which is freely accessible at http://8.142.154.29/SCAR2023 or http://scaratlas.com. SCAR contains spatial transcriptomic data from 21 tumor tissues and single-cell transcriptomic data from 11 301 352 cells encompassing 395 cancer subtypes and covering a wide variety of tissues, organoids, and cell lines. This resource offers diverse functional modules to address key cancer research questions at multiple levels, including the screening of tumor cell types, metabolic features, cell communication and gene expression patterns within the tumor microenvironment. Moreover, SCAR enables the analysis of biomarker expression patterns and cell developmental trajectories. SCAR also provides a comprehensive analysis of multi-dimensional datasets based on 34 state-of-the-art omics techniques, serving as an essential tool for in-depth mining and understanding of cell heterogeneity and spatial location. The implications of this resource extend to both cancer biology research and cancer immunotherapy development.© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.