近年来,基于锌铁氧体(ZnFe2O4)的纳米结构在磁热疗应用方面取得了重大突破。
Recent advances in zinc ferrite (ZnFe2O4) based nanostructures for magnetic hyperthermia applications.
发表日期:2023 Sep 21
作者:
Priyambada Sahoo, Piyush Choudhary, Suvra S Laha, Ambesh Dixit, O Thompson Mefford
来源:
BIOSENSORS & BIOELECTRONICS
摘要:
红石榴石磁铁氧体基磁性纳米材料已被用于众多生物医学应用研究中,包括靶向药物传递、磁性热疗治疗(MHT)、磁共振成像(MRI)和生物传感器等等。最近的研究发现,以氧化锌磁铁为基础的纳米材料是癌症治疗和诊断中有利的候选材料,尤其适用于磁性热疗应用。氧化锌磁铁表现出极好的生物相容性,毒性极小,更重要的是具有令人兴奋的磁性能。此外,这些材料的居里温度远低于其他过渡金属铁氧体。通过调节合成方法和/或引入适当的掺杂剂,氧化锌磁铁纳米系统的居里温度可以调节到MHT治疗窗口范围内,即43-46°C,这个范围对于临床热疗应用非常有益。此外,基于氧化锌磁铁的纳米结构在成功的小鼠模型临床前试验中得到广泛应用,重点是通过磁性热疗和化疗协同杀灭癌细胞。本综述全面系统地介绍了氧化锌磁铁基纳米材料的最新发展,包括掺杂颗粒、形状调整结构和复合材料,用于磁性热疗应用。此外,还提出了关于纯ZnFe2O4及其衍生物纳米结构的未来研究前景。
Spinel ferrite-based magnetic nanomaterials have been investigated for numerous biomedical applications, including targeted drug delivery, magnetic hyperthermia therapy (MHT), magnetic resonance imaging (MRI), and biosensors, among others. Recent studies have found that zinc ferrite-based nanomaterials are favorable candidates for cancer theranostics, particularly for magnetic hyperthermia applications. Zinc ferrite exhibits excellent biocompatibility, minimal toxicity, and more importantly, exciting magnetic properties. In addition, these materials demonstrate a Curie temperature much lower than other transition metal ferrites. By regulating synthesis protocols and/or introducing suitable dopants, the Curie temperature of zinc ferrite-based nanosystems can be tailored to the MHT therapeutic window, i.e., 43-46 °C, a range which is highly beneficial for clinical hyperthermia applications. Furthermore, zinc ferrite-based nanostructures have been extensively used in successful pre-clinical trials on mice models focusing on the synergistic killing of cancer cells involving magnetic hyperthermia and chemotherapy. This review provides a systematic and comprehensive understanding of the recent developments of zinc ferrite-based nanomaterials, including doped particles, shape-modified structures, and composites for magnetic hyperthermia applications. In addition, future research prospects involving pure ZnFe2O4 and its derivative nanostructures have also been proposed.