肿瘤细胞比例的病理学计算机辅助诊断评分:一项瑞士全国性研究。
Pathologist computer-aided diagnostic scoring of tumor cell fraction: A Swiss national study.
发表日期:2023 Sep 22
作者:
Ana Leni Frei, Raphaël Oberson, Elias Baumann, Aurel Perren, Rainer Grobholz, Alessandro Lugli, Heather Dawson, Christian Abbet, Ibai Lertxundi, Stefan Reinhard, Aart Mookhoek, Johann Feichtinger, Rossella Sarro, Gallus Gadient, Corina Dommann-Scherrer, Jessica Barizzi, Sabina Berezowska, Katharina Glatz, Susanne Dertinger, Yara Banz, Rene Schoenegg, Laura Rubbia-Brandt, Achim Fleischmann, Guenter Saile, Pierre Mainil-Varlet, Ruggero Biral, Luca Giudici, Alex Soltermann, Audrey Baur Chaubert, Sylvia Stadlmann, Joachim Diebold, Kristof Egervari, Charles Bénière, Francesca Saro, Andrew Janowczyk, Inti Zlobec
来源:
MOLECULAR & CELLULAR PROTEOMICS
摘要:
肿瘤细胞分数(TCF)估计是一项常见的临床任务,且存在已证实的较大的观察者间变异性。因此,它为评估采用计算机辅助诊断(TCFCAD)工具支持病理学家评估潜在影响提供了理想的实验平台。在一次全国幻灯片研讨会上,要求病理学家(n=69)在有意策划的多样化组织构成、细胞密度和染色强度的H&E结直肠癌图像中,对10个感兴趣区域(ROI)进行视觉估计TCF。随后,在为他们提供预测的肿瘤和非肿瘤细胞的TCFCAD创建的叠加显示以及相应的TCF百分比的同时,他们重新评估了相同的ROI。参与者还使用5级刻度报告了他们的评估信心水平,分别表示没有信心到高信心。TCF的地面真实值(GT)由专家进行了手动细胞计数来定义。在获得协助后,观察者间变异性显著降低,估计收敛于GT。即使TCFCAD的预测与GT稍有偏差,这种改善仍然存在。在ROI上估计的TCF与GT的标准差分别为9.9%与5.8%,差异显著(p < 0.0001)。组内相关系数从0.8增加到0.93(CI95%:[0.65, 0.93] vs [0.86, 0.98]),并且病理学家在获得帮助时表明更有信心(CAD:3.67 ± 0.81 vs. 4.17 ± 0.82)。TCFCAD估计支持显示了得分准确性、病理学家间一致性和评分信心的改善。有趣的是,病理学家在调查结束时还表示更愿意使用这种CAD工具,突显了培训/教育提高CAD系统采用的重要性。版权所有 © 2023. 由 Elsevier Inc. 发表。
Tumor cell fraction (TCF) estimation is a common clinical task with well-established large inter-observer variability. It thus provides an ideal testbed to evaluate potential impacts of employing a computer-aided diagnostic (TCFCAD) tool to support pathologists' evaluation. During a National Slide Seminar event, pathologists (n=69) were asked to visually estimate TCF in 10 regions of interest (ROI) from hematoxylin and eosin (H&E) colorectal cancer images intentionally curated for diverse tissue compositions, cellularity, and stain intensities. Next, they re-evaluated the same ROIs while being provided a TCFCAD created overlay highlighting predicted tumor versus non-tumor cells, together with the corresponding TCF percentage. Participants also reported confidence levels in their assessments using a 5-tiers scale, indicating no confidence to high confidence, respectively. The TCF ground truth (GT) was defined by manual cell-counting by experts. When assisted, inter-observer variability significantly decreased, showing estimates converging to the GT. This improvement remained even when TCFCAD predictions deviated slightly from the GT. The standard-deviation of estimated TCF to the GT across ROIs was 9.9% vs 5.8% with TCFCAD, p < 0.0001. The intraclass correlation coefficient increased from 0.8 to 0.93 (CI95% [0.65, 0.93] vs [0.86, 0.98]) and pathologists stated feeling more confident when aided (3.67 ± 0.81 vs. 4.17 ± 0.82 with CAD). TCFCAD estimation support demonstrated improved scoring accuracy, inter-pathologist agreement and scoring confidence. Interestingly, pathologists also expressed more willingness to use such a CAD tool at the end of the survey, highlighting the importance of training/education to increase adoption of CAD systems.Copyright © 2023. Published by Elsevier Inc.