单核 RNA 测序、空间转录组学和组织化学的整合定义了 NF1 相关丛状神经纤维瘤的复杂微环境。
Integration of single-nuclei RNA-sequencing, spatial transcriptomics and histochemistry defines the complex microenvironment of NF1-associated plexiform neurofibromas.
发表日期:2023 Sep 28
作者:
Vladimir Amani, Kent A Riemondy, Rui Fu, Andrea M Griesinger, Enrique Grimaldo, Graziella Ribeiro De Sousa, Ahmed Gilani, Molly Hemenway, Nicholas K Foreman, Andrew M Donson, Nicholas Willard
来源:
Acta Neuropathologica Communications
摘要:
丛状神经纤维瘤 (PN) 是患有遗传性疾病 1 型神经纤维瘤病 (NF1) 的儿童发病的主要原因,通常会毁坏或威胁重要结构。在 PN 形成过程中,会形成复杂的肿瘤微环境 (TME),其中肿瘤和非肿瘤细胞类型的募集对于生长和进展至关重要。由于 PN 的粘性细胞结构,单细胞 RNA 测序很困难,并且可能导致无法检测到关键细胞亚群。为了绕过这一障碍,我们对 8 个冷冻 PN 样本进行了单核 RNA 测序 (snRNA-seq),并将其与 4 个 PN 样本中的空间转录组学 (ST) 和免疫组织化学相结合,为转录组数据提供形态学背景。 SnRNA-seq 分析明确绘制了 PN TME 中的异质细胞亚群,其中主要部分是成纤维细胞亚型。尽管从多个解剖位置切除,PN 在细胞亚群比例方面表现出显着的样本间同质性。 ST 分析确定了不同的细胞亚群,这些亚群使用 snRNA-seq 数据进行注释并与组织学特征相关。通过受体/配体相互作用分析鉴定雪旺细胞/成纤维细胞相互作用,表明成纤维细胞和非髓鞘雪旺细胞 (NM-SC) 及其亚型之间预测的 Neurexin 1/Neuroligin 1 (NRXN1/NLGN1) 受体-配体相互作用的可能性很高, 分别。与正常小鼠坐骨神经单细胞 RNA-seq 数据集相比,我们在 PN snRNA-seq 数据中观察到 NRXN1 和 NLGN1 的异常表达。该通路从未在 PN 中被描述过,可能表明假定的 NM-SC 细胞来源与周围成纤维细胞之间有一条清晰、直接的通讯通路,可能推动疾病进展。 SnRNA-seq 与空间转录组学相结合,增进了我们对 PN TME 复杂细胞异质性的理解,并确定了可能推动疾病进展的潜在新型通讯途径,这一发现可以为患有这些毁灭性儿童和早期成年肿瘤的患者提供转化治疗选择。 © 2023。BioMed Central Ltd.,Springer Nature 的一部分。
Plexiform neurofibroma (PN) is a leading cause of morbidity in children with the genetic condition Neurofibromatosis Type 1 (NF1), often disfiguring or threatening vital structures. During formation of PN, a complex tumor microenvironment (TME) develops, with recruitment of neoplastic and non-neoplastic cell types being critical for growth and progression. Due to the cohesive cellularity of PN, single-cell RNA-sequencing is difficult and may result in a loss of detection of critical cellular subpopulations. To bypass this barrier, we performed single-nuclei RNA-sequencing (snRNA-seq) on 8 frozen PN samples, and integrated this with spatial transcriptomics (ST) in 4 PN samples and immunohistochemistry to provide morphological context to transcriptomic data. SnRNA-seq analysis definitively charted the heterogeneous cellular subpopulations in the PN TME, with the predominant fraction being fibroblast subtypes. PN showed a remarkable amount of inter-sample homogeneity regarding cellular subpopulation proportions despite being resected from a variety of anatomical locations. ST analysis identified distinct cellular subpopulations which were annotated using snRNA-seq data and correlated with histological features. Schwann cell/fibroblast interactions were identified by receptor/ligand interaction analysis demonstrating a high probability of Neurexin 1/Neuroligin 1 (NRXN1/NLGN1) receptor-ligand cross-talk predicted between fibroblasts and non-myelinated Schwann cells (NM-SC) and subtypes, respectively. We observed aberrant expression of NRXN1 and NLGN1 in our PN snRNA-seq data compared to a normal mouse sciatic nerve single-cell RNA-seq dataset. This pathway has never been described in PN and may indicate a clear and direct communication pathway between putative NM-SC cells of origin and surrounding fibroblasts, potentially driving disease progression. SnRNA-seq integrated with spatial transcriptomics advances our understanding of the complex cellular heterogeneity of PN TME and identify potential novel communication pathways that may drive disease progression, a finding that could provide translational therapy options for patients with these devastating tumors of childhood and early adulthood.© 2023. BioMed Central Ltd., part of Springer Nature.