研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

使用 PET/CT 放射组学术前预测食管癌患者的临床和病理分期。

Preoperative prediction of clinical and pathological stages for patients with esophageal cancer using PET/CT radiomics.

发表日期:2023 Oct 15
作者: Xiyao Lei, Zhuo Cao, Yibo Wu, Jie Lin, Zhenhua Zhang, Juebin Jin, Yao Ai, Ji Zhang, Dexi Du, Zhifeng Tian, Congying Xie, Weiwei Yin, Xiance Jin
来源: Insights into Imaging

摘要:

术前分层对于食管癌(EC)患者的治疗至关重要。目的 探讨基于 PET-CT 的影像组学在术前预测 EC 患者临床和病理分期的可行性和准确性。回顾性纳入 100 例术前 PET-CT 图像经组织学证实的 EC 患者,并随机分为训练组和验证组。比例为7:3。应用最大相关性最小冗余 (mRMR) 分别从 PET、CT 和融合 PET-CT 图像中选择最佳放射组学特征。应用Logistic回归(LR)对T分期(T1,2 vs. T3,4)、淋巴结转移(LNM)(LNM(-) vs. LNM( ))和病理状态(pstage)(I- II 与 III-IV) 分别具有 CT (CT_LR_Score)、PET (PET_LR_Score)、融合 PET/CT (Fused_LR_Score) 以及组合 CT 和 PET 特征 (CT   PET_LR_Score) 的特征。 7 个、10 个和 7 个 CT 特征; 7、8、7 PET 特征;使用 mRMR 分别选择 3、6 和 3 个融合 PET/CT 特征来预测 T 分期、LNM 和 P 分期。验证队列中 T 期、LNM 和后期预测的曲线下面积 (AUC) 分别为 0.846、0.756、0.665 和 0.815; 0.769、0.760、0.665 和 0.824; CT_LR_Score、PET_ LR_Score、Fused_ LR_Score 和 CT  PET_ LR_Score 模型分别为 0.727、0.785、0.689 和 0.837。结合 PET 和 CT 放射组学对 T 分期、LNM 和 p 期的预测具有准确的预测能力。 EC患者。PET/CT放射组学在术前对食管癌进行分期是可行且有希望的。• PET-CT放射组学在淋巴结和病理分期预测方面取得了最佳性能。 • CT 放射组学实现了 T 分期预测的最佳 AUC。 • PET-CT 放射组学在术前对 EC 进行分层是可行的且有望实现分期。© 2023。欧洲放射学会 (ESR)。
Preoperative stratification is critical for the management of patients with esophageal cancer (EC). To investigate the feasibility and accuracy of PET-CT-based radiomics in preoperative prediction of clinical and pathological stages for patients with EC.Histologically confirmed 100 EC patients with preoperative PET-CT images were enrolled retrospectively and randomly divided into training and validation cohorts at a ratio of 7:3. The maximum relevance minimum redundancy (mRMR) was applied to select optimal radiomics features from PET, CT, and fused PET-CT images, respectively. Logistic regression (LR) was applied to classify the T stage (T1,2 vs. T3,4), lymph node metastasis (LNM) (LNM(-) vs. LNM(+)), and pathological state (pstage) (I-II vs. III-IV) with features from CT (CT_LR_Score), PET (PET_LR_Score), fused PET/CT (Fused_LR_Score), and combined CT and PET features (CT + PET_LR_Score), respectively.Seven, 10, and 7 CT features; 7, 8, and 7 PET features; and 3, 6, and 3 fused PET/CT features were selected using mRMR for the prediction of T stage, LNM, and pstage, respectively. The area under curves (AUCs) for T stage, LNM, and pstage prediction in the validation cohorts were 0.846, 0.756, 0.665, and 0.815; 0.769, 0.760, 0.665, and 0.824; and 0.727, 0.785, 0.689, and 0.837 for models of CT_LR_Score, PET_ LR_Score, Fused_ LR_Score, and CT + PET_ LR_Score, respectively.Accurate prediction ability was observed with combined PET and CT radiomics in the prediction of T stage, LNM, and pstage for EC patients.PET/CT radiomics is feasible and promising to stratify stages for esophageal cancer preoperatively.• PET-CT radiomics achieved the best performance for Node and pathological stage prediction. • CT radiomics achieved the best AUC for T stage prediction. • PET-CT radiomics is feasible and promising to stratify stages for EC preoperatively.© 2023. European Society of Radiology (ESR).