空心球形 Mn0.5Zn0.5Fe2O4 纳米颗粒具有磁涡流结构,可增强磁热疗功效。
Hollow spherical Mn0.5Zn0.5Fe2O4 nanoparticles with a magnetic vortex configuration for enhanced magnetic hyperthermia efficacy.
发表日期:2023 Oct 31
作者:
Kaiming Shen, Lixian Li, Funan Tan, Shuo Wu, Tianli Jin, Jingxiang You, Mun Yin Chee, Yunfei Yan, Wen Siang Lew
来源:
Cell Death & Disease
摘要:
癌症热疗中的传统磁性纳米药剂存在磁加热效率低的问题。为了解决这个问题,研究人员寻求具有拓扑磁畴结构(例如涡旋域结构)的磁性纳米粒子,以增强传统纳米粒子的磁加热性能,同时保持优异的生物相容性。在这项研究中,我们使用简单的溶剂热方法合成了空心球形Mn0.5Zn0.5Fe2O4 (MZF-HS)纳米粒子,产生的样品平均外径约为350 nm,平均内径约为220 nm。实验验证了纳米粒子的加热效率,发现空心MZF的比吸收率(SAR)值约为实心MZF的1.5倍。加热性能的增强归因于中空 MZF 结构中的涡流状态,这一点已通过微磁模拟研究得到验证。体外研究表明,在 MZF-HS 存在的情况下,MHT 后乳腺癌细胞(MCF-7、BT549 和 4T1)的细胞活力较低。 MHT 后合成的 MZF 导致 51% 的细胞死亡,而 MZF-HS 样品导致 77% 的细胞死亡。我们的研究结果表明,具有涡旋态的磁性颗粒表现出卓越的加热效率,凸显了空心球形颗粒作为 MHT 应用的有效热发生器的潜力。
Conventional magnetic nanoagents in cancer hyperthermia therapy suffer from a low magnetic heating efficiency. To address this issue, researchers have pursued magnetic nanoparticles with topological magnetic domain structures, such as the vortex-domain structure, to enhance the magnetic heating performance of conventional nanoparticles while maintaining excellent biocompatibility. In this study, we synthesized hollow spherical Mn0.5Zn0.5Fe2O4 (MZF-HS) nanoparticles using a straightforward solvothermal method, yielding samples with an average outer diameter of approximately 350 nm and an average inner diameter of about 220 nm. The heating efficiency of the nanoparticles was experimentally verified, and the specific absorption rate (SAR) value of the hollow MZF was found to be approximately 1.5 times that of solid MZF. The enhanced heating performance is attributed to the vortex states in the hollow MZF structure as validated with micromagnetic simulation studies. In vitro studies demonstrated the lower cell viability of breast cancer cells (MCF-7, BT549, and 4T1) after MHT in the presence of MZF-HS. The synthesized MZF caused 51% cell death after MHT, while samples of MZF-HS resulted in 77% cell death. Our findings reveal that magnetic particles with a vortex state demonstrate superior heating efficiency, highlighting the potential of hollow spherical particles as effective heat generators for MHT applications.