研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

pH 敏感葡萄糖驱动纳米电机可增强细胞内药物输送和铁死亡效率。

pH-Sensitive Glucose-Powered Nanomotors for Enhanced Intracellular Drug Delivery and Ferroptosis Efficiency.

发表日期:2023 Nov 06
作者: Yuxing Ji, Yanan Pan, Xuemei Ma, Yan Ma, Zhongxiang Zhao, Qiang He
来源: Cell Death & Disease

摘要:

我们提出了一种葡萄糖驱动的 Janus 纳米电机,其中两个面分别用葡萄糖氧化酶 (GOx) 和聚多巴胺-Fe3 螯合物 (PDF) 进行功能化。在葡萄糖燃料溶液中,这些 Janus 纳米电机一侧的 GOx 将葡萄糖燃料催化分解为葡萄糖酸和过氧化氢 (H2O2),以 2.67 μm/s 的速度驱动它们。潜在的推进机制是基于葡萄糖的自扩散电泳,这是由于酶促反应产生的局部葡萄糖浓度梯度。基于增强的扩散运动,这种具有催化活性的纳米马达增加了与细胞的接触概率,随后表现出优异的 Fe3 离子传递和 H2O2 生成能力,从而增强铁死亡效率,从而诱导癌细胞死亡。特别是,Fe3离子在微酸性环境中从纳米电机中释放出来,随后通过芬顿反应产生有毒的羟基自由基,从而积累活性氧(ROS)水平(约300%)和进一步的脂质过氧化(LPO),从而加强了铁死亡治疗用于癌症治疗。这种具有高效扩散功能的 pH 敏感纳米电机可以表现出 Fe 离子过载和足够的 H2O2,以促进铁死亡效率,这为未来癌症精准治疗提供了巨大潜力。© 2023 Wiley-VCH GmbH。
We propose a glucose-powered Janus nanomotor where two faces are functionalized with glucose oxidase (GOx) and polydopamine-Fe3+ chelates (PDF), respectively. In the glucose fuel solution, the GOx on the one side of these Janus nanomotors catalytically decomposes glucose fuels into gluconic acid and hydrogen peroxide (H2O2) to drive them at a speed of 2.67 μm/s. The underlying propulsion mechanism is the glucose-based self-diffusiophoresis owing to the generated local glucose concentration gradient by the enzymatic reaction. Based on the enhanced diffusion motion, such nanomotors with catalytic activity increase the contact probability towards cells and subsequently exhibit excellent capabilities for Fe3+ ions delivery and H2O2 generation for enhancing ferroptosis efficiency for inducing cancer cell death. In particular, the Fe3+ ions are released from nanomotors in a slightly acidic environment, and subsequently generate toxic hydroxyl radicals via Fenton reactions, which accumulation reactive oxygen species (ROS) level (~300%) and further lipid peroxidation (LPO) strengthened ferroptosis therapy for cancer treatment. Such a pH-sensitive nanomotor with efficient diffusion can exhibit Fe ions overloading and sufficient H2O2 to promote ferroptosis efficiency, which provides great potential for future cancer precise therapy.© 2023 Wiley-VCH GmbH.