用于抗癌植物化学二烯丙基硫醚的钌(II)聚吡啶基光笼:笼状复合物和前体非笼状复合物的暗反应和光反应性比较研究。
Ruthenium(II) Polypyridyl-Based Photocages for an Anticancer Phytochemical Diallyl Sulfide: Comparative Dark and Photoreactivity Studies of Caged and Precursor Uncaged Complexes.
发表日期:2023 Nov 06
作者:
Ramranjan Mishra, Abhijit Saha, Pritha Chatterjee, Atish Bhattacharyya, Ashis K Patra
来源:
ANTIOXIDANTS & REDOX SIGNALING
摘要:
钌(II)聚吡啶复合物通过选择性激活肿瘤内的前药来提供对药物作用的时空控制,这为癌症化疗中非常需要的选择性问题指明了方向。与细胞毒性Ru(II)聚吡啶核心协同连接的抗癌生物活性配体的光笼锁及其在癌细胞中的选择性释放是更有效药物作用的有前途的方式。大蒜中天然存在的二烯丙基硫醚 (DAS) 具有抗癌、抗氧化和抗炎活性。在此,我们设计了两种 Ru(II) 聚吡啶配合物来笼住具有硫醚基供体位点的 DAS。为了进行深入的光笼蔽研究,我们比较了 DAS 笼蔽化合物与未笼蔽的 Ru(II) 配合物的反应性,通式为 [Ru(ttp)(NN)(L)] /2 。这里,在第一个系列中,ttp = 对甲苯基三联吡啶,NN = phen (1,10-菲咯啉),L = Cl- (1-Cl) 和 H2O (1-H2O),而对于第二个系列,NN = = dpq(吡嗪基[2,3-f][1,10]菲咯啉),L = Cl-(2-Cl)和 H2O(2-H2O)。 DAS 与 1-H2O 和 2-H2O 反应分别生成笼状配合物 [Ru(ttp)(NN)(DAS)](PF6)2,即 1-DAS 和 2-DAS。通过 X 射线晶体学对配合物进行了结构表征,并通过 1 H NMR 和 ESI-MS 研究进行了溶液状态表征。通过 1H NMR 和紫外-可见光谱监测 DAS 从 Ru(II) 核心的光诱导释放。当用 DMSO 中的 470 nm 蓝色 LED 照射时,1-DAS 和 2-DAS 的光取代量子产率 (Φ) 分别为 0.035 和 0.057。在黑暗中进行 1H NMR 研究时,未笼罩和笼罩的 Ru(II) 配合物的溶液态形态和动力学行为令人感兴趣,并且在本研究中进行了描述。笼中的 1-DAS 和 2-DAS 复合物在 DMSO 中相当长的一段时间内在结构上基本保持完整。未封闭的 1-Cl 和 2-Cl 络合物虽然仅在 DMSO 中没有发生取代,但在 10% DMSO/H2O 混合物中发生取代,但在 16 小时内完全转化为相应的 DMSO 加合物。为了深入了解与生物靶标的反应性,我们观察到 1-Cl 水解后与 5'-GMP 形成加合物,而当 1-Cl 在 323 ℃ 的水中与 GSH 反应时,观察到少量 GSSG 加合物水解后的K.1-Cl与l-蛋氨酸反应,尽管反应速率比DMSO稍慢,这表明不同的硫基键具有不同的反应动力学。尽管1-H2O在室温下与亚砜和硫醚配体反应,但在较高温度下反应速率明显更快,并且基于硫醇的体系需要更高的热能来进行共轭。总体而言,这些研究为新一代 Ru(II) 聚吡啶配合物的深思熟虑设计提供了见解,用于笼养合适的生物活性有机分子。
The spatiotemporal control over the drug's action offered by ruthenium(II) polypyridyl complexes by the selective activation of the prodrug inside the tumor has beaconed toward much-desired selectivity issues in cancer chemotherapy. The photocaging of anticancer bioactive ligands attached synergistically with cytotoxic Ru(II) polypyridyl cores and selective release thereof in cancer cells are a promising modality for more effective drug action. Diallyl sulfide (DAS) naturally found in garlic has anticancer, antioxidant, and anti-inflammatory activities. Herein, we designed two Ru(II) polypyridyl complexes to cage DAS having a thioether-based donor site. For in-depth photocaging studies, we compared the reactivity of the DAS-caged compounds with the uncaged Ru(II)-complexes with the general formula [Ru(ttp)(NN)(L)]+/2+. Here, in the first series, ttp = p-tolyl terpyridine, NN = phen (1,10-phenanthroline), and L = Cl- (1-Cl) and H2O (1-H2O), while for the second series, NN = dpq (pyrazino[2,3-f][1,10]phenanthroline), and L = Cl- (2-Cl) and H2O (2-H2O). The reaction of DAS with 1-H2O and 2-H2O yielded the caged complexes [Ru(ttp)(NN)(DAS)](PF6)2, i.e., 1-DAS and 2-DAS, respectively. The complexes were structurally characterized by X-ray crystallography, and the solution-state characterization was done by 1H NMR and ESI-MS studies. Photoinduced release of DAS from the Ru(II) core was monitored by 1H NMR and UV-vis spectroscopy. When irradiated with a 470 nm blue LED in DMSO, the photosubstitution quantum yields (Φ) of 0.035 and 0.057 were observed for 1-DAS and 2-DAS, respectively. Intriguing solution-state speciation and kinetic behaviors of the uncaged and caged Ru(II)-complexes emerged from 1H NMR studies in the dark, and they are depicted in this work. The caged 1-DAS and 2-DAS complexes remained mostly structurally intact for a reasonably long period in DMSO. The uncaged 1-Cl and 2-Cl complexes, although did not undergo substitution in only DMSO but in the 10% DMSO/H2O mixture, completely converted to the corresponding DMSO-adduct within 16 h. Toward gaining insights into the reactivity with the biological targets, we observed that 1-Cl upon hydrolysis formed an adduct with 5'-GMP, while a small amount of GSSG-adduct was observed when 1-Cl was reacted with GSH in H2O at 323 K. 1-Cl after hydrolysis reacted with l-methionine, although the rate was slightly slower compared with that with DMSO, suggesting varying reaction kinetics with different sulfur-based linkages. Although 1-H2O reacted with sulfoxide and thioether ligands at room temperature, the rate was much faster at higher temperatures obviously, and thiol-based systems needed higher thermal energy for conjugation. Overall, these studies provide insight for thoughtful design of new generation Ru(II) polypyridyl complexes for caging suitable bioactive organic molecules.