使用机器人多细胞生物打印系统通过自动化和控制过程制造三维骨髓龛样急性髓性白血病疾病模型。
Fabrication of a three-dimensional bone marrow niche-like acute myeloid Leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system.
发表日期:2023 Nov 06
作者:
Dana M Alhattab, Ioannis Isaioglou, Salwa Alshehri, Zainab N Khan, Hepi H Susapto, Yanyan Li, Yara Marghani, Arwa A Alghuneim, Rubén Díaz-Rúa, Sherin Abdelrahman, Shuroug Al-Bihani, Farid Ahmed, Raed I Felimban, Heba Alkhatabi, Raed Alserihi, Malak Abedalthagafi, AlShaibani AlFadel, Abdalla Awidi, Adeel Gulzar Chaudhary, Jasmeen Merzaban, Charlotte A E Hauser
来源:
Stem Cell Research & Therapy
摘要:
急性髓系白血病(AML)是一种血液恶性肿瘤,由于疾病复发率高,治疗仍面临挑战。为了更好地了解耐药机制并确定新疗法,需要模拟骨髓 (BM) 微环境的强大临床前模型。本研究旨在实现三维 (3D) AML 疾病模型的自动化制造过程,该模型概括了 BM 微环境的 3D 空间结构,并应用于药物筛选和研究。为了构建该模型,我们研究了一类独特的四聚体肽具有自组装成稳定水凝胶的先天能力。建立了自动化机器人生物打印流程来制造 3D BM(利基样)多细胞 AML 疾病模型,该模型由白血病细胞以及 BM 的基质细胞和内皮细胞部分组成。此外,还构建了单一培养和双重培养模型。使用我们的模型进行了白血病细胞相容性、功能(体外和体内)和药物评估研究。此外,还使用 TaqMan 阵列对 3D 培养的基质细胞和原代白血病细胞进行了 RNAseq 和基因表达分析。所选的肽水凝胶形成了高度多孔的纳米纤维网络,其机械性能与 BM 细胞外基质相似。机器人生物打印机和新型四重同轴喷嘴能够自动制造 3D BM 利基样 AML 疾病模型,并控制多种细胞类型沉积到模型中。该模型支持原代白血病细胞、内皮细胞和基质细胞的活力和生长,并概括了细胞-细胞和细胞-ECM 相互作用。此外,我们的模型中的 AML 细胞具有静态特征,具有改善的化学抗性属性,更类似于我们的体内结果所表明的天然条件。此外,全转录组数据证明了 3D 培养对增强 BM 微环境细胞特征的作用。我们在 3D 模型中确定了 AML 细胞中上调的分子途径,这些途径可能导致 AML 耐药性和疾病复发。我们的结果证明了开发 3D 仿生模型的重要性,该模型密切再现体内条件,以更深入地了解耐药机制和新的药物耐药性机制。疗法的发展。这些模型还可以通过测试患者特定的治疗来改善个性化医疗。© 2023。作者。
Acute myeloid leukemia (AML) is a hematological malignancy that remains a therapeutic challenge due to the high incidence of disease relapse. To better understand resistance mechanisms and identify novel therapies, robust preclinical models mimicking the bone marrow (BM) microenvironment are needed. This study aimed to achieve an automated fabrication process of a three-dimensional (3D) AML disease model that recapitulates the 3D spatial structure of the BM microenvironment and applies to drug screening and investigational studies.To build this model, we investigated a unique class of tetramer peptides with an innate ability to self-assemble into stable hydrogel. An automated robotic bioprinting process was established to fabricate a 3D BM (niche-like) multicellular AML disease model comprised of leukemia cells and the BM's stromal and endothelial cellular fractions. In addition, monoculture and dual-culture models were also fabricated. Leukemia cell compatibility, functionalities (in vitro and in vivo), and drug assessment studies using our model were performed. In addition, RNAseq and gene expression analysis using TaqMan arrays were also performed on 3D cultured stromal cells and primary leukemia cells.The selected peptide hydrogel formed a highly porous network of nanofibers with mechanical properties similar to the BM extracellular matrix. The robotic bioprinter and the novel quadruple coaxial nozzle enabled the automated fabrication of a 3D BM niche-like AML disease model with controlled deposition of multiple cell types into the model. This model supported the viability and growth of primary leukemic, endothelial, and stromal cells and recapitulated cell-cell and cell-ECM interactions. In addition, AML cells in our model possessed quiescent characteristics with improved chemoresistance attributes, resembling more the native conditions as indicated by our in vivo results. Moreover, the whole transcriptome data demonstrated the effect of 3D culture on enhancing BM niche cell characteristics. We identified molecular pathways upregulated in AML cells in our 3D model that might contribute to AML drug resistance and disease relapse.Our results demonstrate the importance of developing 3D biomimicry models that closely recapitulate the in vivo conditions to gain deeper insights into drug resistance mechanisms and novel therapy development. These models can also improve personalized medicine by testing patient-specific treatments.© 2023. The Author(s).