研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

改善新手和经验丰富的读者的乳房X光检查解释:两种商业人工智能软件的比较研究。

Improving mammography interpretation for both novice and experienced readers: a comparative study of two commercial artificial intelligence software.

发表日期:2023 Nov 08
作者: Hee Jeong Kim, Woo Jung Choi, Hye Yun Gwon, Seo Jin Jang, Eun Young Chae, Hee Jung Shin, Joo Hee Cha, Hak Hee Kim
来源: EUROPEAN RADIOLOGY

摘要:

为了评估在两种商业 AI 软件的协助下,新手和经验丰富的放射科医生对乳房 X 光检查判读的改进情况。我们比较了两种 AI 软件(AI-1 和 AI-2)在两名经验丰富的读者和两名新手读者中进行 200 次乳房 X 光检查(80 例癌症)的性能例)。 4 周内进行了两次阅读课程。读者对有或没有人工智能辅助的情况下,对恶性肿瘤的可能性(范围,1-7)和恶性肿瘤的百分比概率(范围,0-100%)进行了评分。分析了 AUROC、敏感性和特异性的差异。新手(AI-1 为 0.86 至 0.90 [p = 0.005];AI-2 为 0.91 [p < 0.001])和有经验的读者(AI-1 为 0.87 至 0.92)的平均 AUROC 均有所增加。 AI-1 [p < 0.001];AI-2 为 0.90 [p = 0.004])。新手读者中,AI-1 的敏感性从 81.3% 增加到 88.8% (p = 0.027),AI-2 的敏感性增加到 91.3% (p = 0.005),而 AI-1 的敏感性从 81.9% 增加到 90.6% (p = 0.001),到在有经验的读者中,87.5% 的人使用 AI-2 (p = 0.016)。新手(均 p > 0.999)和有经验的读者(AI-1 的 p > 0.999,AI-2 的 0.282)的特异性均没有显着下降。根据人工智能软件的类型,性能变化没有显着差异(p > 0.999)。商业人工智能软件提高了新手和有经验的读者的诊断性能。使用的人工智能软件类型并没有显着影响性能变化。需要对大量病例和读者进行进一步验证。无论人类读者的经验水平如何,商业人工智能软件都可以有效地辅助乳房 X 线摄影解读。• 乳房 X 线摄影解读仍然具有挑战性,并且受到广泛的观察者间差异的影响。 • 在这项多读者研究中,两种商业人工智能软件提高了新手和经验丰富的读者对乳房X 线摄影解读的灵敏度。使用的人工智能软件类型并没有显着影响性能变化。 • 无论人类读者的经验水平如何,商业人工智能软件都可以有效地支持乳房X 线摄影解读。© 2023。作者,获得欧洲放射学会的独家许可。
To evaluate the improvement of mammography interpretation for novice and experienced radiologists assisted by two commercial AI software.We compared the performance of two AI software (AI-1 and AI-2) in two experienced and two novice readers for 200 mammographic examinations (80 cancer cases). Two reading sessions were conducted within 4 weeks. The readers rated the likelihood of malignancy (range, 1-7) and the percentage probability of malignancy (range, 0-100%), with and without AI assistance. Differences in AUROC, sensitivity, and specificity were analyzed.Mean AUROC increased in both novice (0.86 to 0.90 with AI-1 [p = 0.005]; 0.91 with AI-2 [p < 0.001]) and experienced readers (0.87 to 0.92 with AI-1 [p < 0.001]; 0.90 with AI-2 [p = 0.004]). Sensitivities increased from 81.3 to 88.8% with AI-1 (p = 0.027) and to 91.3% with AI-2 (p = 0.005) in novice readers, and from 81.9 to 90.6% with AI-1 (p = 0.001) and to 87.5% with AI-2 (p = 0.016) in experienced readers. Specificity did not decrease significantly in both novice (p > 0.999, both) and experienced readers (p > 0.999 with AI-1 and 0.282 with AI-2). There was no significant difference in the performance change depending on the type of AI software (p > 0.999).Commercial AI software improved the diagnostic performance of both novice and experienced readers. The type of AI software used did not significantly impact performance changes. Further validation with a larger number of cases and readers is needed.Commercial AI software effectively aided mammography interpretation irrespective of the experience level of human readers.• Mammography interpretation remains challenging and is subject to a wide range of interobserver variability. • In this multi-reader study, two commercial AI software improved the sensitivity of mammography interpretation by both novice and experienced readers. The type of AI software used did not significantly impact performance changes. • Commercial AI software may effectively support mammography interpretation irrespective of the experience level of human readers.© 2023. The Author(s), under exclusive licence to European Society of Radiology.