研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

用于控制接受化疗的胃肠癌患者症状的短信集成和聊天机器人界面自我管理计划的可行性:试点混合方法研究。

Feasibility of a Text Messaging-Integrated and Chatbot-Interfaced Self-Management Program for Symptom Control in Patients With Gastrointestinal Cancer Undergoing Chemotherapy: Pilot Mixed Methods Study.

发表日期:2023 Nov 10
作者: Sameh Gomaa, James Posey, Babar Bashir, Atrayee Basu Mallick, Eleanor Vanderklok, Max Schnoll, Tingting Zhan, Kuang-Yi Wen
来源: CLINICAL PHARMACOLOGY & THERAPEUTICS

摘要:

门诊化疗常常让患者在家中应对一系列复杂的副作用。利用定制的循证内容来监测和管理胃肠道 (GI) 癌症患者的这些症状仍然是一个尚未开发的潜力。这项研究旨在通过将尖端的短信系统与聊天机器人界面集成来缩小门诊化疗护理的差距。这种方法旨在实现对接受静脉化疗的胃肠道癌症患者的副作用进行实时监测和主动管理。实时化疗相关副作用监测支持系统(RT-CAMSS)是迭代开发的,结合了以患者为中心的输入和基于证据的信息。它综合了化疗知识、自我护理症状管理技能、情感支持和健康生活方式建议。在一项为期两个月的单臂试点研究中,接受化疗的胃肠道癌症患者每周三次收到量身定制的干预信息,并通过聊天机器人界面每周收到基于不良事件的症状评估通用术语标准的患者报告结果版本。对基线和干预后患者进行调查和访谈。在 45 名符合条件的患者中,有 34 名患者入组(同意率 76%)。平均年龄为 61 (SD 12) 岁,其中 19 名 (56%) 为女性,21 名 (62%) 为非西班牙裔白人。最常见的癌症类型是胰腺癌(n=18,53%),其次是结肠癌(n=12,35%)和胃癌(n=4,12%)。总共有 27 名参与者(保留率 79%)完成了干预后随访。总共有 20 名患者至少回复一次短信以寻求更多信息,其中关键词“化疗”或“支持”回复最多。在使用聊天机器人系统检查器的人中,疲劳是最常报告的症状 (n=15),其次是神经病 (n=7)。经过多重比较调整后,使用该平台的患者表现出显着改善的患者激活测量(3.70,95% CI -6.919 至 -0.499;P=.02)。干预后访谈​​和满意度调查显示,参与者发现干预措施易于使用,并提供了有价值的信息。利用移动技术通信为增强医疗保健服务提供了巨大的可扩展性。这项研究提供了 RT-CAMSS 参与度和可接受性的初步证据,需要在对照临床试验环境中进行进一步评估。©Sameh Gomaa、James Posey、Babar Bashir、Atrayee Basu Mallick、Eleanor Vanderklok、Max Schnoll、Tingting Zhan、Kuang-伊文.最初发表于 JMIR 形成研究 (https://formative.jmir.org),2023 年 11 月 10 日。
Outpatient chemotherapy often leaves patients to grapple with a range of complex side effects at home. Leveraging tailored evidence-based content to monitor and manage these symptoms remains an untapped potential among patients with gastrointestinal (GI) cancer.This study aims to bridge the gap in outpatient chemotherapy care by integrating a cutting-edge text messaging system with a chatbot interface. This approach seeks to enable real-time monitoring and proactive management of side effects in patients with GI cancer undergoing intravenous chemotherapy.Real-Time Chemotherapy-Associated Side Effects Monitoring Supportive System (RT-CAMSS) was developed iteratively, incorporating patient-centered inputs and evidence-based information. It synthesizes chemotherapy knowledge, self-care symptom management skills, emotional support, and healthy lifestyle recommendations. In a single-arm 2-month pilot study, patients with GI cancer undergoing chemotherapy received tailored intervention messages thrice a week and a weekly Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events-based symptom assessment via a chatbot interface. Baseline and postintervention patient surveys and interviews were conducted.Out of 45 eligible patients, 34 were enrolled (76% consent rate). The mean age was 61 (SD 12) years, with 19 (56%) being females and 21 (62%) non-Hispanic White. The most common cancer type was pancreatic (n=18, 53%), followed by colon (n=12, 35%) and stomach (n=4, 12%). In total, 27 (79% retention rate) participants completed the postintervention follow-up. In total, 20 patients texted back at least once to seek additional information, with the keyword "chemo" or "support" texted the most. Among those who used the chatbot system checker, fatigue emerged as the most frequently reported symptom (n=15), followed by neuropathy (n=7). Adjusted for multiple comparisons, patients engaging with the platform exhibited significantly improved Patient Activation Measure (3.70, 95% CI -6.919 to -0.499; P=.02). Postintervention interviews and satisfaction surveys revealed that participants found the intervention was user-friendly and were provided with valuable information.Capitalizing on mobile technology communication holds tremendous scalability for enhancing health care services. This study presents initial evidence of the engagement and acceptability of RT-CAMSS, warranting further evaluation in a controlled clinical trial setting.©Sameh Gomaa, James Posey, Babar Bashir, Atrayee Basu Mallick, Eleanor Vanderklok, Max Schnoll, Tingting Zhan, Kuang-Yi Wen. Originally published in JMIR Formative Research (https://formative.jmir.org), 10.11.2023.