通过解耦光力纳米显微镜可视化超快光热动力学。
Visualizing ultrafast photothermal dynamics with decoupled optical force nanoscopy.
发表日期:2023 Nov 10
作者:
Hanwei Wang, Sean M Meyer, Catherine J Murphy, Yun-Sheng Chen, Yang Zhao
来源:
BIOMEDICINE & PHARMACOTHERAPY
摘要:
纳米材料中由共振光吸收产生的光热效应在生物医学、癌症治疗和显微镜方面有着广泛的应用。尽管其普遍存在,但吸光纳米粒子的光热效应通常是使用批量测量来评估的,忽略了近场效应。除了标准成像和治疗用途之外,纳秒瞬态光热效应还被用于细菌灭活、神经刺激、药物输送和化学合成。虽然扫描探针显微镜和电子显微镜提供光热场的单粒子成像,但它们的缓慢速度将观察限制在毫秒或秒内,从而阻碍了纳米级动态研究。在这里,我们引入了解耦光力纳米镜(Dofn),通过利用对时间调制的独特相位响应来实现光热力的纳米级映射。我们利用光热效应的反作用来区分调制周期内的不同时间范围。这使我们能够捕获纳秒范围内单个金纳米棒的动态光热过程,从而深入了解纳米尺度的非稳态热扩散。© 2023。作者。
The photothermal effect in nanomaterials, resulting from resonant optical absorption, finds wide applications in biomedicine, cancer therapy, and microscopy. Despite its prevalence, the photothermal effect in light-absorbing nanoparticles has typically been assessed using bulk measurements, neglecting near-field effects. Beyond standard imaging and therapeutic uses, nanosecond-transient photothermal effects have been harnessed for bacterial inactivation, neural stimulation, drug delivery, and chemical synthesis. While scanning probe microscopy and electron microscopy offer single-particle imaging of photothermal fields, their slow speed limits observations to milliseconds or seconds, preventing nanoscale dynamic investigations. Here, we introduce decoupled optical force nanoscopy (Dofn), enabling nanometer-scale mapping of photothermal forces by exploiting unique phase responses to temporal modulation. We employ the photothermal effect's back-action to distinguish various time frames within a modulation period. This allows us to capture the dynamic photothermal process of a single gold nanorod in the nanosecond range, providing insights into non-stationary thermal diffusion at the nanoscale.© 2023. The Author(s).