研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

通过基于聚合物的表面改性增强中空多孔氧化铁纳米粒子的物理化学性质和生物相容性。

Enhancing Physicochemical Properties and Biocompatibility of Hollow Porous Iron Oxide Nanoparticles through Polymer-Based Surface Modifications.

发表日期:2023 Nov 13
作者: John Wilfred T Malabanan, Khent Primo Alcantara, Pongsakorn Jantaratana, Yue Pan, Nonthaneth Nalinratana, Opa Vajragupta, Pornchai Rojsitthisak, Pranee Rojsitthisak
来源: Epigenetics & Chromatin

摘要:

在这项研究中,我们合成了使用聚合物(特别是壳聚糖(Chi)、聚乙二醇(PEG)和藻酸盐(Alg))进行表面修饰的中空多孔氧化铁纳米粒子(HPIONP),以提高胶体稳定性和生物相容性。对于胶体稳定性,Alg 包被的 HPIONP 保持尺寸稳定性长达 24 小时,仅增加 18%,而 Chi、PEG 和未包被的 HPIONP 则表现出更大的尺寸增加,范围为 64% 至 140%。通过评估聚合物涂层 HPIONP 的细胞活力、遗传毒性和血液相容性来评估其生物相容性。在 6.25 至 100 μg/mL 的测试浓度范围内,未包被和聚合物包被的 HPIONP 对三种正常细胞系(RAW264.7、3T3-L1 和 MCF10A)均表现出最小的细胞毒性,在最高浓度下细胞活力超过 80%。值得注意的是,根据微核测定,聚合物涂层的 HPIONP 表现出非遗传毒性,并显示出血液相容性,小鼠血液中仅出现 2-3% 的溶血,而未涂层的 HPIONP 则表现出 4-5% 的溶血。此外,我们评估了在固定磁场中暴露 2 小时后 HPIONP 对 MDA-MB-231 乳腺癌细胞的细胞毒性,结果显示,使用未涂层和聚合物涂层的 HPIONP 处理时,细胞死亡率最高分别为 38% 和 29%分别为 100 μg/mL。这种现象归因于铁催化 Fenton 和 Haber-Weiss 反应,导致活性氧 (ROS) 依赖性细胞死亡 (r ≥ 0.98)。总之,与未包被的 HPIONP 相比,水热合成和随后用聚合物进行的 HPIONP 表面修饰显示出改善的胶体稳定性、非遗传毒性和血液相容性,同时保持对正常细胞和癌细胞的细胞毒性水平非常相似。这项研究为进一步探索聚合物涂层铺平了道路,以提高磁性纳米粒子在输送抗癌药物方面的整体性能和安全性。
In this study, we synthesized hollow porous iron oxide nanoparticles (HPIONPs) with surface modifications using polymers, specifically chitosan (Chi), polyethylene glycol (PEG), and alginate (Alg), to improve colloidal stability and biocompatibility. For colloidal stability, Alg-coated HPIONPs maintained size stability up to 24 h, with only an 18% increase, while Chi, PEG, and uncoated HPIONPs showed larger size increases ranging from 64 to 140%. The biocompatibility of polymer-coated HPIONPs was evaluated by assessing their cell viability, genotoxicity, and hemocompatibility. Across tested concentrations from 6.25 to 100 μg/mL, both uncoated and polymer-coated HPIONPs showed minimal cytotoxicity against three normal cell lines: RAW264.7, 3T3-L1, and MCF10A, with cell viability exceeding 80% at the highest concentration. Notably, polymer-coated HPIONPs exhibited nongenotoxicity based on the micronucleus assay and showed hemocompatibility, with only 2-3% hemolysis in mouse blood, in contrast to uncoated HPIONPs which exhibited 4-5%. Furthermore, we evaluated the cytotoxicity of HPIONPs on MDA-MB-231 breast cancer cells after a 2 h exposure to a stationary magnetic field, and the results showed the highest cell death of 38 and 29% when treated with uncoated and polymer-coated HPIONPs at 100 μg/mL, respectively. This phenomenon is attributed to iron catalyzing the Fenton and Haber-Weiss reactions, leading to reactive oxygen species (ROS)-dependent cell death (r ≥ 0.98). In conclusion, the hydrothermal synthesis and subsequent surface modification of HPIONPs with polymers showed improved colloidal stability, nongenotoxicity, and hemocompatibility compared to uncoated HPIONPs while maintaining closely similar levels of cytotoxicity against both normal and cancer cells. This research has paved the way for further exploration of polymer coatings to enhance the overall performance and safety profile of magnetic nanoparticles in delivering anticancer drugs.