研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

葡萄膜黑色素瘤肝转移患者临床和放射组学参数的预后价值。

Prognostic value of clinical and radiomic parameters in patients with liver metastases from uveal melanoma.

发表日期:2024 Jul 12
作者: Mael Lever, Simon Bogner, Melina Giousmas, Fabian D Mairinger, Hideo A Baba, Heike Richly, Tanja Gromke, Martin Schuler, Nikolaos E Bechrakis, Halime Kalkavan
来源: Pigment Cell & Melanoma Research

摘要:

大约每两个葡萄膜黑色素瘤患者就会发生远处转移,其中肝脏是主要靶器官。虽然诊断远处转移后的中位生存期仅限于一年,但尚未定义的患者亚组会经历更有利的结果。因此,预后生物标志物可以帮助识别不同的风险群体,以指导患者咨询、治疗决策和研究人群分层。为此,我们使用 Cox-Lasso 回归机器学习(适应高维输入参数空间)回顾性分析了 101 名新诊断的葡萄膜黑色素瘤肝转移患者的队列。我们表明,可以根据(i)临床和实验室参数,(ii)定量总体肝肿瘤负荷的测量,以及(iii)放射组学参数来进行实质性二元风险分层。然而,结合两个或所有三个领域未能改善患者的预后分离。此外,我们在首次诊断转移性疾病时确定了高度相关的临床参数(包括乳酸脱氢酶、血小板计数、天冬氨酸转氨酶和无转移间隔)作为治疗失败时间和总生存期的预测因子。总而言之,由我们的机器学习算法构建的风险分层模型确定了患有肝转移的葡萄膜黑色素瘤患者的临床、放射学和放射组学参数的可比较且独立的预后价值。© 2024 作者。色素细胞
Approximately every second patient with uveal melanoma develops distant metastases, with the liver as the predominant target organ. While the median survival after diagnosis of distant metastases is limited to a year, yet-to-be-defined subgroups of patients experience a more favorable outcome. Therefore, prognostic biomarkers could help identify distinct risk groups to guide patient counseling, therapeutic decision-making, and stratification of study populations. To this end, we retrospectively analyzed a cohort of 101 patients with newly diagnosed hepatic metastases from uveal melanoma by using Cox-Lasso regression machine learning, adapted to a high-dimensional input parameter space. We show that substantial binary risk stratification can be performed, based on (i) clinical and laboratory parameters, (ii) measures of quantitative overall hepatic tumor burden, and (iii) radiomic parameters. Yet, combining two or all three domains failed to improve prognostic separation of patients. Additionally, we identified highly relevant clinical parameters (including lactate dehydrogenase, thrombocyte counts, aspartate transaminase, and the metastasis-free interval) at first diagnosis of metastatic disease as predictors for time-to-treatment failure and overall survival. Taken together, the risk stratification models, built by our machine-learning algorithm, identified a comparable and independent prognostic value of clinical, radiological, and radiomic parameters in uveal melanoma patients with hepatic metastases.© 2024 The Author(s). Pigment Cell & Melanoma Research published by John Wiley & Sons Ltd.