研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

黑色素瘤前哨淋巴结阳性:哪种风险预测工具最准确?

Sentinel lymph node positivity in melanoma: Which risk prediction tool is most accurate?

发表日期:2024 Jul 11
作者: Masen Ragsdale, Bobby Dow, Daniel Fernandes, Yuri Han, Aayushi Parikh, Kavya Boyapati, Christine S Landry, Charles W Kimbrough, Vadim P Koshenkov, John T Preskitt, Adam C Berger, Catherine H Davis
来源: SURGERY

摘要:

黑色素瘤的前哨淋巴结活检可确定治疗和预后因素,并提高疾病特异性生存率。为了对患者进行风险分层以考虑前哨淋巴结活检,纪念斯隆凯特琳癌症中心和澳大利亚黑色素瘤研究所开发了列线图来预测前哨淋巴结阳性。我们的目的是比较这 2 个列线图的准确性。对 2018 年 9 月至 2022 年 12 月期间接受前哨淋巴结活检的黑色素瘤患者进行了一项多机构研究。使用受试者操作特征曲线和曲线下面积分析 2 种风险预测工具确定前哨淋巴结活检阳性的准确性。总共 532 名患者因黑色素瘤接受了前哨淋巴结活检; 98 例(18.4%)前哨淋巴结阳性。年龄增长与前哨淋巴结阳性呈负相关 (P < .01); 35.7% ≤ 30 岁的患者前哨淋巴结阳性,而 9.7% ≥ 75 岁的患者前哨淋巴结阳性。当我们分析整个研究人群时,两种风险预测工具的准确性相同(纪念斯隆凯特琳癌症中心曲线下面积:0.693;MIA 曲线下面积:0.699)。然而,纪念斯隆凯特琳癌症中心工具对于年龄≥75 岁的患者来说是更好的预测因子(纪念斯隆凯特琳癌症中心曲线下面积:0.801;澳大利亚黑色素瘤研究所曲线下面积:0.712,P < .01),但澳大利亚黑色素瘤研究所工具的预测效果更好有丝分裂指数较高的患者效果更好(有丝分裂/mm2 ≥2;曲线下面积纪念斯隆凯特琳癌症中心:0.659;曲线下面积澳大利亚黑色素瘤研究所:0.717,P = .027)。这两种模型对于年轻患者(年龄≤30岁;曲线下面积纪念斯隆凯特琳癌症中心:0.456;曲线下面积澳大利亚黑色素瘤研究所:0.589,P = .283)来说都是较差的预测因子。当前的研究表明这两种风险分层工具在预测特定人群中前哨淋巴结阳性的能力方面有所不同:纪念斯隆凯特琳癌症中心的工具对于老年患者来说是更好的预测器,而澳大利亚黑色素瘤研究所的工具对于有丝分裂指数较高的患者来说更准确。两种列线图在预测年轻患者前哨淋巴结阳性方面表现不佳。版权所有 © 2024 Elsevier Inc. 保留所有权利。
Sentinel lymph node biopsy for melanoma determines treatment and prognostic factors and improves disease-specific survival. To risk-stratify patients for sentinel lymph node biopsy consideration, Memorial Sloan Kettering Cancer Center and Melanoma Institute Australia developed nomograms to predict sentinel lymph node positivity. We aimed to compare the accuracy of these 2 nomograms.A multi-institutional study of patients with melanoma receiving sentinel lymph node biopsy between September 2018 and December 2022 was performed. The accuracy of the 2 risk prediction tools in determining a positive sentinel lymph node biopsy was analyzed using receiver operating characteristic curves and area under the curve.In total, 532 patients underwent sentinel lymph node biopsy for melanoma; 98 (18.4%) had positive sentinel lymph node. Increasing age was inversely related to sentinel lymph node positivity (P < .01); 35.7% of patients ≤30 years had positive sentinel lymph node compared with 9.7% of patients ≥75 years. When we analyzed the entire study population, accuracy of the 2 risk prediction tools was equal (area under the curveMemorial Sloan Kettering Cancer Center: 0.693; area under the curveMIA: 0.699). However, Memorial Sloan Kettering Cancer Center tool was a better predictor in patients aged ≥75 years (area under the curveMemorial Sloan Kettering Cancer Center: 0.801; area under the curveMelanoma Institute Australia: 0.712, P < .01) but Melanoma Institute Australia tool performed better in patients with a higher mitotic index (mitoses/mm2 ≥2; area under the curveMemorial Sloan Kettering Cancer Center: 0.659; area under the curveMelanoma Institute Australia: 0.717, P = .027). Both models were poor predictors of sentinel lymph node positivity in young patients (age ≤30 years; area under the curveMemorial Sloan Kettering Cancer Center: 0.456; area under the curveMelanoma Institute Australia: 0.589, P = .283).The current study suggests that the 2 risk stratification tools differ in their abilities to predict sentinel lymph node positivity in specific populations: Memorial Sloan Kettering Cancer Center tool is a better predictor for older patients, whereas Melanoma Institute Australia tool is more accurate in patients with a higher mitotic index. Both nomograms performed poorly in predicting sentinel lymph node positivity in young patients.Copyright © 2024 Elsevier Inc. All rights reserved.