研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

人工智能驱动的分子对接和引导分子动力学,用于准确选择抗 CD30 嵌合抗原受体的 scFv。

Artificial Intelligence-Powered Molecular Docking and Steered Molecular Dynamics for Accurate scFv Selection of Anti-CD30 Chimeric Antigen Receptors.

发表日期:2024 Jun 30
作者: Nico Martarelli, Michela Capurro, Gizem Mansour, Ramina Vossoughi Jahromi, Arianna Stella, Roberta Rossi, Emanuele Longetti, Barbara Bigerna, Marco Gentili, Ariele Rosseto, Riccardo Rossi, Chiara Cencini, Carla Emiliani, Sabata Martino, Marten Beeg, Marco Gobbi, Enrico Tiacci, Brunangelo Falini, Francesco Morena, Vincenzo Maria Perriello
来源: BIOSENSORS & BIOELECTRONICS

摘要:

嵌合抗原受体 (CAR) T 细胞代表了一种革命性的免疫疗法,它允许通过源自单克隆抗体 (mAb) 的独特单链片段变量 (scFv) 来特异性识别肿瘤。因此,scFv 选择是 CAR 构建的基本步骤,以确保针对肿瘤抗原结合的 CAR 信号传导准确有效。然而,比较不同 scFv 衍生 CAR 的传统体外和体内生物学方法既昂贵又费力。为了在 CAR-T 细胞工程之前预测最佳的 scFv 结合,我们对不同的抗 CD30 mAb 克隆进行了人工智能 (AI) 引导的分子对接和分子动力学分析。虚拟计算 scFv 筛选在结合能力和抗肿瘤功效方面分别显示出与表面等离子共振 (SPR) 和功能性 CAR-T 细胞体外和体内测定相当的结果。所提出的快速、低成本的计算机分析有可能推动新型 CAR 结构的开发,对减少时间、成本和实验动物使用需求产生重大影响。
Chimeric antigen receptor (CAR) T cells represent a revolutionary immunotherapy that allows specific tumor recognition by a unique single-chain fragment variable (scFv) derived from monoclonal antibodies (mAbs). scFv selection is consequently a fundamental step for CAR construction, to ensure accurate and effective CAR signaling toward tumor antigen binding. However, conventional in vitro and in vivo biological approaches to compare different scFv-derived CARs are expensive and labor-intensive. With the aim to predict the finest scFv binding before CAR-T cell engineering, we performed artificial intelligence (AI)-guided molecular docking and steered molecular dynamics analysis of different anti-CD30 mAb clones. Virtual computational scFv screening showed comparable results to surface plasmon resonance (SPR) and functional CAR-T cell in vitro and in vivo assays, respectively, in terms of binding capacity and anti-tumor efficacy. The proposed fast and low-cost in silico analysis has the potential to advance the development of novel CAR constructs, with a substantial impact on reducing time, costs, and the need for laboratory animal use.