基于蒙特卡罗的纳米剂量测定为涉及俄歇电子发射器的放射性药物治疗带来了希望。
Monte Carlo-Based Nanoscale Dosimetry Holds Promise for Radiopharmaceutical Therapy Involving Auger Electron Emitters.
发表日期:2024 Jun 26
作者:
Ohyun Kwon, Sabrina L V Hoffman, Paul A Ellison, Bryan P Bednarz
来源:
PHYSICAL THERAPY & REHABILITATION JOURNAL
摘要:
放射性药物治疗(RPT)正在发展成为一种有前景的癌症治疗策略。随着人们对俄歇电子等短程粒子的兴趣不断增长,了解脱氧核糖核酸 (DNA) 水平的剂量响应关系变得至关重要。在本研究中,我们使用 Geant4-DNA 工具包来评估俄歇电子发射同位素 I-125 造成的 DNA 损伤。我们将短 B 型 DNA (B-DNA) 几何结构中每个碱基对位置的能量沉积和单链断裂 (SSB) 产量与现有模拟和实验数据进行了比较,同时考虑了物理直接命中和化学间接命中。此外,我们还评估了我们的高分辨率 B-DNA 靶标与之前发布的简单 B-DNA 几何结构之间的剂量差异。总体而言,我们对 I-125 衰变的 SSB 产量的基准测试结果与模拟和实验数据表现出良好的一致性。然后,我们利用该模拟评估了治疗诊断 Br-77 标记的聚 ADP 核糖聚合酶 (PARP) 抑制剂放射性药物引起的 SSB 和双链断裂 (DSB) 产量。结果表明,在产生 SSB 和 DSB 方面,化学间接撞击比物理直接撞击占主导地位。这项研究为未来研究 RPT 的纳米剂量特性奠定了基础。
Radiopharmaceutical therapy (RPT) is evolving as a promising strategy for treating cancer. As interest grows in short-range particles, like Auger electrons, understanding the dose-response relationship at the deoxyribonucleic acid (DNA) level has become essential. In this study, we used the Geant4-DNA toolkit to evaluate DNA damage caused by the Auger-electron-emitting isotope I-125. We compared the energy deposition and single strand break (SSB) yield at each base pair location in a short B-form DNA (B-DNA) geometry with existing simulation and experimental data, considering both physical direct and chemical indirect hits. Additionally, we evaluated dosimetric differences between our high-resolution B-DNA target and a previously published simple B-DNA geometry. Overall, our benchmarking results for SSB yield from I-125 decay exhibited good agreement with both simulation and experimental data. Using this simulation, we then evaluated the SSB and double strand break (DSB) yields caused by a theranostic Br-77-labeled poly ADP ribose polymerase (PARP) inhibitor radiopharmaceutical. The results indicated a predominant contribution of chemical indirect hits over physical direct hits in generating SSB and DSB. This study lays the foundation for future investigations into the nano-dosimetric properties of RPT.