研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

解读胰腺癌的复杂景观:深入了解肿瘤生物学、微环境和治疗干预措施。

Decoding the Intricate Landscape of Pancreatic Cancer: Insights into Tumor Biology, Microenvironment, and Therapeutic Interventions.

发表日期:2024 Jul 02
作者: Antonella Argentiero, Alessandro Andriano, Ingrid Catalina Caradonna, Giulia de Martino, Vanessa Desantis
来源: GENES & DEVELOPMENT

摘要:

胰腺导管腺癌(PDAC)由于其侵袭性和预后不良而面临重大的肿瘤学挑战。肿瘤微环境(TME)在进展和治疗抵抗中发挥着关键作用。非肿瘤细胞,例如癌症相关成纤维细胞 (CAF) 和肿瘤相关巨噬细胞 (TAM),有助于肿瘤生长、血管生成和免疫逃避。尽管免疫细胞浸润 TME,但肿瘤细胞通过分泌趋化因子和表达免疫检查点抑制剂 (ICIs) 来逃避免疫反应。血管成分,如内皮细胞和周细胞,刺激血管生成以支持肿瘤生长,而脂肪细胞则分泌促进细胞生长、侵袭和治疗抵抗的因子。此外,神经周围侵犯是 PDAC 的一个特征,会导致局部复发和预后不良。此外,包括克尔斯滕大鼠肉瘤病毒癌基因(KRAS)、转化生长因子β(TGF-β)、Notch、缺氧诱导因子(HIF)和Wnt/β-连环蛋白在内的关键信号通路驱动肿瘤进展和抵抗。靶向 TME 对于开发有效的疗法至关重要,包括抑制 CAF、调节免疫反应、破坏血管生成和阻断神经细胞相互作用等策略。最近的多组学方法已经确定了与失巢凋亡抵抗相关的特征基因,这些基因可以作为预后生物标志物和个性化治疗的目标。
Pancreatic ductal adenocarcinoma (PDAC) presents significant oncological challenges due to its aggressive nature and poor prognosis. The tumor microenvironment (TME) plays a critical role in progression and treatment resistance. Non-neoplastic cells, such as cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), contribute to tumor growth, angiogenesis, and immune evasion. Although immune cells infiltrate TME, tumor cells evade immune responses by secreting chemokines and expressing immune checkpoint inhibitors (ICIs). Vascular components, like endothelial cells and pericytes, stimulate angiogenesis to support tumor growth, while adipocytes secrete factors that promote cell growth, invasion, and treatment resistance. Additionally, perineural invasion, a characteristic feature of PDAC, contributes to local recurrence and poor prognosis. Moreover, key signaling pathways including Kirsten rat sarcoma viral oncogene (KRAS), transforming growth factor beta (TGF-β), Notch, hypoxia-inducible factor (HIF), and Wnt/β-catenin drive tumor progression and resistance. Targeting the TME is crucial for developing effective therapies, including strategies like inhibiting CAFs, modulating immune response, disrupting angiogenesis, and blocking neural cell interactions. A recent multi-omic approach has identified signature genes associated with anoikis resistance, which could serve as prognostic biomarkers and targets for personalized therapy.