使用治疗前和治疗中的预后生物标志物预测接受 Atezolizumab 治疗的晚期 NSCLC 患者的生存期。
Predicting Survival in Patients with Advanced NSCLC Treated with Atezolizumab Using Pre- and on-Treatment Prognostic Biomarkers.
发表日期:2024 Jul 12
作者:
Sébastien Benzekry, Mélanie Karlsen, Célestin Bigarré, Abdessamad El Kaoutari, Bruno Gomes, Martin Stern, Ales Neubert, Rene Bruno, François Mercier, Suresh Vatakuti, Peter Curle, Candice Jamois
来源:
CLINICAL PHARMACOLOGY & THERAPEUTICS
摘要:
现有的生存预测模型仅依赖于基线或肿瘤动力学数据,缺乏机器学习集成。我们引入了一种新颖的动力学机器学习 (kML) 模型,该模型集成了基线标记物、肿瘤动力学和四种治疗中简单血液标记物(白蛋白、C 反应蛋白、乳酸脱氢酶和中性粒细胞)。 kML 是在三项 II 期试验(533 名患者)中针对非小细胞肺癌的免疫检查点抑制 (ICI) 开发的,并在一项 III 期试验(ICI 和化疗,377 名和 354 名患者)的两个组中进行了验证。它超越了当前最先进的个体预测,测试集 C 指数为 0.790,12 个月生存准确度为 78.7%,风险比为 25.2(95% CI:10.4-61.3,P < 0.0001)以确定长期幸存者。至关重要的是,kML 仅使用 25 周的研究数据就预测了 III 期试验的成功(预测 HR = 0.814 (0.64-0.994) 与最终研究 HR = 0.778 (0.65-0.931))。治疗中血液标记物建模与预测机器学习相结合,构成了支持个性化医疗和药物开发的宝贵方法。该代码可在 https://gitlab.inria.fr/benzekry/nlml_onco 上公开获取。© 2024 作者。临床药理学
Existing survival prediction models rely only on baseline or tumor kinetics data and lack machine learning integration. We introduce a novel kinetics-machine learning (kML) model that integrates baseline markers, tumor kinetics, and four on-treatment simple blood markers (albumin, C-reactive protein, lactate dehydrogenase, and neutrophils). Developed for immune-checkpoint inhibition (ICI) in non-small cell lung cancer on three phase II trials (533 patients), kML was validated on the two arms of a phase III trial (ICI and chemotherapy, 377 and 354 patients). It outperformed the current state-of-the-art for individual predictions with a test set C-index of 0.790, 12-months survival accuracy of 78.7% and hazard ratio of 25.2 (95% CI: 10.4-61.3, P < 0.0001) to identify long-term survivors. Critically, kML predicted the success of the phase III trial using only 25 weeks of on-study data (predicted HR = 0.814 (0.64-0.994) vs. final study HR = 0.778 (0.65-0.931)). Modeling on-treatment blood markers combined with predictive machine learning constitutes a valuable approach to support personalized medicine and drug development. The code is publicly available at https://gitlab.inria.fr/benzekry/nlml_onco.© 2024 The Author(s). Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.