抗癌药物治疗中精确剂量的机器学习方法:范围界定审查。
Machine Learning Methods for Precision Dosing in Anticancer Drug Therapy: A Scoping Review.
发表日期:2024 Aug 17
作者:
Olga Teplytska, Moritz Ernst, Luca Marie Koltermann, Diego Valderrama, Elena Trunz, Marc Vaisband, Jan Hasenauer, Holger Fröhlich, Ulrich Jaehde
来源:
CLINICAL PHARMACOKINETICS
摘要:
在过去的十年中,人们提出了各种机器学习技术,旨在主要基于推测的药物作用或测量的效果生物标志物来个性化抗癌药物的剂量。本次范围审查的目的是全面总结在抗癌药物治疗中使用机器学习进行精准剂量的研究现状。本次范围审查是根据 Cochrane 和 Joanna Briggs Institute 的临时指导进行的。我们系统地检索了 Medline(通过 PubMed)、Embase 和 Cochrane 图书馆的数据库,以查找研究文章和评论,包括 2016 年之后发表的结果。结果根据范围界定评论的系统评论和荟萃分析扩展的首选报告项目(PRISMA- ScR)清单。总共确定了 17 项相关研究。在纳入的 12 项研究中,使用了强化学习方法,包括经典、深度、双深度和保守 Q 学习以及模糊强化学习。此外,还比较了经典机器学习方法的性能,并使用基于抛物线方程的人工智能平台来前瞻性和回顾性地指导剂量,尽管仅限于有限数量的患者。由于算法结构显着不同,因此不可能对各种机器学习方法进行有意义的比较。总的来说,这篇综述强调了机器学习方法对于抗癌药物剂量优化的临床相关性,因为许多算法已经显示出有前景的结果,可以实现无模型与标准方案相比,预测有可能最大化功效并最小化毒性。© 2024。作者。
In the last decade, various Machine Learning techniques have been proposed aiming to individualise the dose of anticancer drugs mostly based on a presumed drug effect or measured effect biomarkers. The aim of this scoping review was to comprehensively summarise the research status on the use of Machine Learning for precision dosing in anticancer drug therapy.This scoping review was conducted in accordance with the interim guidance by Cochrane and the Joanna Briggs Institute. We systematically searched the databases Medline (via PubMed), Embase and the Cochrane Library for research articles and reviews including results published after 2016. Results were reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist.A total of 17 relevant studies was identified. In 12 of the included studies, Reinforcement Learning methods were used, including Classical, Deep, Double Deep and Conservative Q-Learning and Fuzzy Reinforcement Learning. Furthermore, classical Machine Learning methods were compared in terms of their performance and an artificial intelligence platform based on parabolic equations was used to guide dosing prospectively and retrospectively, albeit only in a limited number of patients. Due to the significantly different algorithm structures, a meaningful comparison between the various Machine Learning approaches was not possible.Overall, this review emphasises the clinical relevance of Machine Learning methods for anticancer drug dose optimisation, as many algorithms have shown promising results enabling model-free predictions with the potential to maximise efficacy and minimise toxicity when compared to standard protocols.© 2024. The Author(s).