研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

基于炎症和营养生物标志物的列线图,用于预测乳腺癌患者的生存。

A nomogram based on inflammation and nutritional biomarkers for predicting the survival of breast cancer patients.

发表日期:2024
作者: Caibiao Wei, Huaying Ai, Dan Mo, Peidong Wang, Liling Wei, Zhimin Liu, Peizhang Li, Taijun Huang, Miaofeng Liu
来源: Frontiers in Endocrinology

摘要:

我们的目标是开发一种新的预后模型,结合炎症、营养参数和临床病理特征来预测乳腺癌 (BC) 患者的总生存期 (OS) 和无病生存期 (DFS)。该研究包括临床病理学和随访数据来自 2013 年至 2021 年间总共 2857 名 BC 患者。数据被随机分为两个队列:训练队列 (n=2001) 和验证队列 (n=856)。根据训练队列的多元 Cox 回归分析结果建立列线图。通过一致性指数(C-index)和校准曲线评估列线图的预测准确性和判别能力。此外,还进行了决策曲线分析 (DCA) 来评估列线图的临床价值。为 BC 开发了列线图,其中包含淋巴细胞、血小板计数、血红蛋白水平、白蛋白与球蛋白比率、前白蛋白水平和其他关键变量:亚型和 TNM 分期。在 OS 和 DFS 的预测中,列线图的一致性指数(C 指数)在统计上大于单独使用 TNM 分期获得的 C 指数值。此外,时间相关的 AUC 超过了 0.7 的阈值,证明了列线图在不同时期具有令人满意的判别性能。 DCA 显示列线图比 TNM 分期系统提供了更大的总体净效益。结合炎症、营养和临床病理变量的列线图表现出出色的辨别力。该列线图是一种很有前景的工具,可用于预测 BC 患者的结果和制定个性化治疗策略。版权所有 © 2024 Wei、Ai、Mo、Wang、Wei、Liu、Li、Huang 和 Liu。
We aim to develop a new prognostic model that incorporates inflammation, nutritional parameters and clinical-pathological features to predict overall survival (OS) and disease free survival (DFS) of breast cancer (BC) patients.The study included clinicopathological and follow-up data from a total of 2857 BC patients between 2013 and 2021. Data were randomly divided into two cohorts: training (n=2001) and validation (n=856) cohorts. A nomogram was established based on the results of a multivariate Cox regression analysis from the training cohorts. The predictive accuracy and discriminative ability of the nomogram were evaluated by the concordance index (C-index) and calibration curve. Furthermore, decision curve analysis (DCA) was performed to assess the clinical value of the nomogram.A nomogram was developed for BC, incorporating lymphocyte, platelet count, hemoglobin levels, albumin-to-globulin ratio, prealbumin level and other key variables: subtype and TNM staging. In the prediction of OS and DFS, the concordance index (C-index) of the nomogram is statistically greater than the C-index values obtained using TNM staging alone. Moreover, the time-dependent AUC, exceeding the threshold of 0.7, demonstrated the nomogram's satisfactory discriminative performance over different periods. DCA revealed that the nomogram offered a greater overall net benefit than the TNM staging system.The nomogram incorporating inflammation, nutritional and clinicopathological variables exhibited excellent discrimination. This nomogram is a promising instrument for predicting outcomes and defining personalized treatment strategies for patients with BC.Copyright © 2024 Wei, Ai, Mo, Wang, Wei, Liu, Li, Huang and Liu.