基于弹性体环烯烃共聚物的新型热塑性微型阀。
Novel thermoplastic microvalves based on an elastomeric cyclic olefin copolymer.
发表日期:2024 Aug 22
作者:
Katie Childers, Ian M Freed, Mateusz L Hupert, Benjamin Shaw, Noah Larsen, Paul Herring, Jeanne H Norton, Farhad Shiri, Judy Vun, Keith J August, Małgorzata A Witek, Steven A Soper
来源:
LAB ON A CHIP
摘要:
微流体系统结合了多个处理步骤和组件,以自主方式执行复杂的测定。为了将多个生物分析处理步骤集成到一个系统中,阀门被用作引导流体并控制样品和试剂引入的组件。虽然弹性体聚二甲基硅氧烷一直是阀门的首选材料,但它不能很好地扩展以适应需要廉价且快速生产的一次性集成系统。作为聚二甲基硅氧烷的替代品,我们推出了一种由热塑性弹性体环烯烃共聚物 (eCOC) 制成的膜,该膜具有制造可靠阀门的独特属性。 eCOC 膜可以挤出或注塑成型,以实现廉价阀门的大规模生产。 eCOC 通常是疏水性的,可以用紫外线/臭氧激活,产生稳定的亲水性单分子层。 eCOC 膜和热塑性阀座经过原位紫外线/臭氧活化后组装阀门,并在室温下通过层压粘合。 eCOC 与聚碳酸酯 (PC) 和聚对苯二甲酸乙二醇酯 (PETG) 形成牢固的结合,能够分别承受 75 kPa 和 350 kPa 的高流体压力。我们通过机械和气动驱动对 eCOC 阀门进行了表征,发现阀门可以重复驱动 > 50 次而不会出现故障。最后,采用带有 eCOC 阀的集成系统来检测儿童急性淋巴细胞白血病 (ALL) 患者血液样本中的微小残留病 (MRD)。这两个模块集成系统通过亲和选择 CD19( ) 细胞来评估 MRD,并通过使用 ALL 特异性标记进行免疫表型分析来计数白血病细胞。
Microfluidic systems combine multiple processing steps and components to perform complex assays in an autonomous fashion. To enable the integration of several bio-analytical processing steps into a single system, valving is used as a component that directs fluids and controls introduction of sample and reagents. While elastomer polydimethylsiloxane has been the material of choice for valving, it does not scale well to accommodate disposable integrated systems where inexpensive and fast production is needed. As an alternative to polydimethylsiloxane, we introduce a membrane made of thermoplastic elastomeric cyclic olefin copolymer (eCOC), that displays unique attributes for the fabrication of reliable valving. The eCOC membrane can be extruded or injection molded to allow for high scale production of inexpensive valves. Normally hydrophobic, eCOC can be activated with UV/ozone to produce a stable hydrophilic monolayer. Valves are assembled following in situ UV/ozone activation of eCOC membrane and thermoplastic valve seat and bonded by lamination at room temperature. eCOC formed strong bonding with polycarbonate (PC) and polyethylene terephthalate glycol (PETG) able to hold high fluidic pressures of 75 kPa and 350 kPa, respectively. We characterized the eCOC valves with mechanical and pneumatic actuation and found the valves could be reproducibly actuated >50 times without failure. Finally, an integrated system with eCOC valves was employed to detect minimal residual disease (MRD) from a blood sample of a pediatric acute lymphoblastic leukemia (ALL) patient. The two module integrated system evaluated MRD by affinity-selecting CD19(+) cells and enumerating leukemia cells via immunophenotyping with ALL-specific markers.